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Abstract We propose a novel approach for semantic seg
mentation of building facades. Our system consists of thr
distinct layers, representing different levels of abstraction i ; o -
facade images: segments, objects and architectural eleme i e f
In the rst layer, the facade is segmented into regions, ea ! ||1|’1|.'1|1 ||>‘
of which is assigned a probability distribution over seman- AR AL -4
tic classes. We evaluate different state-of-the-art segmentig | { M”I\NL 1
tion and classi cation strategies to obtain the initial prob- {* ' ‘lwfi'l‘fi‘l‘iﬁ”‘i
abilistic semantic labeling. In the second layer, we investi-; I A
gate the performance of different object detectors and shoy=== e S | L 1
the bene t of using such detectors to improve our initial la- | il
beling. The generic approaches of the rst two layers areg
then specialized for the task of facade labeling in the third{
layer. There, we incorporate additional meta-knowledge i
the form ofweak architectural principleswhich enforces  gig 1 The input to our system is cropped and recti ed facade image
architectural plausibility and consistency on the nal recon-(left). We process the image by our three layers to produced a labeled
struction. Rigorous tests performed on two existing datase@tput image (middle). From this output we produce a textured proce-
of building facades demonstrate that we outperform the cu@ura model (right).

rent state of the art, even when using outputs from lower

layers of the pipeline. Finally, we demonstrate how the outq |ntroduction
put of the highest layer can be used to create a procedural

building reconstruction. The accurate reconstruction of building facades plays an im-
portant role in 3D city modeling. Current models built by
simple plane tting and texturing are a good starting point,
but provide inadequate 3D visual perception. For instance,
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of implementing long-range interactions, it appears impossi-
ble that improved, bottom-up depth extraction and primitive

Keywords semantic segmentationfacade parsing
procedural modeling

Markus Mathias Andelo MartinovE Luc Van Gool

K.U. Leuven, Kasteelpark Arenberg 10 - box 2441 tting alone can avoid such artifacts from sneaking in. Fur-
3001 Heverlee, Belgium thermore, conventional bottom-up models based on struc-
E-mail: markus.mathias@esat.kuleuven.be ture from mouo_n lack any semantic I_mowledge about the
E-mail: andelo.martinovic@esat.kuleuven.be scene. Yet, adding a good understanding of what needs to be
E-mail: luc.vangool@esat.kuleuven.be modeled is a strong cue, not only to improve the visual and

3D quality of the model, but also to substantially widen its



2 Markus Mathias et al.

usage (e.g. for animation where people should walk through Our approach to facade parsing is performed in three

doors, not walls, when wanting to know the average numbeayers, representing different levels of abstraction in facade

of oors that the buildings in a street have, etc.). Figdre images: segments, objects and architectural elements. An
shows an example of our modeling pipeline, that builds oroverview is given in Figure.

the inclusion of semantic aspects.

Converselyprocedural modelingorovides an effective Bottom layer.Initially, the facade is segmented into super-
way to create detailed and realistic 3D building models thapixels, i.e. image regions. Visual features are extracted from
do come with all the semantic labels required. These modhe corresponding regions, and subsequently used for clas-
els are typically generated by iteratively applying procedu-si cation. Each region is assigned a probability distribution
ral shape grammar rules on a starting shape, e.g. a buildirgyer semantic classes. In this layer, we pay particular atten-
footprint. Each rule adds more detail to the result of the pretion to the evaluation of different segmentation algorithms
vious. The resulting models support the addition of visuallyand classi ers on the task of semantic segmentation of fa-
crucial effects such as window being re ective, balconies tocades, as well as the effect of segmentation coarseness on
protrude, etc. the classi cation performance.

The goal of creating procedural models éxistingbuild-
ings from images or other data thereof, has been camed Middle layer. The second layer of our approach introduces
verse procedural modelinghn early attempt can be found detectors for objects found in urban scenes, such as windows
in Muller et al. (2007). Such inverse procedural modeling and doors. The classi er output from the bottom layer is
needs to select the appropriate rules from the style grammarpmbined with the object detector responses (see Fgjure
as well as their parameter settings. As the correspondingnd results in our improved middle layer output. The combi-
search space is huge, solutions typically start from a prepraation of detections and the labeling from the bottom layer is
cessed version of the raw data. The semantic segmentatiachieved through a 2D conditional random eld de ned over
of facades - also referred to as facade parsing - is a good etlie image, which can be ef ciently solved with graph cuts.
ample. This said, such accurate labeling of facade elemente investigate the performance of different object detectors
(such as windows, doors or balconies) is a dif cult problemand show the bene t of using such detectors to improve our
in its own right, given the great diversity of buildings and theinitial labeling.
interference of factors like shadows, occlusions and re ec-
tions in the images. It is this facade parsing that this papeTop layer.The generic approaches in the rst two layers are
focuses on. Furthermore, a shape grammar speci ¢ to theomplemented with considerations dedicated to the task of
desired style is not easy to come by. An expert in that styléacade labeling. In the top layer, we incorporate additional
needs to sit down with a person versed in the creation ofeta-knowledge in the form afeak architectural princi-
the grammars. Therefore, our approach also avoids the neggks In contrast to shape grammar rules, these principles
for such a style-speci ¢ grammar and uses generic archiare easily observable in the images. For instance, the prin-
tectural principles instead. This stands in contrast to mosdiple of vertical window alignment is often an implicit con-
earlier inverse procedural modeling work (see dgboul  sequence of grammar rules, never made explicit in any of
et al.(2013). Assuming that the input facades are of a certhem. Also, we use these architectural concepts as guide-
tain architectural style helps to keep the dimensionality ofines, not as hard constraints. Therefore, we are also able
the search space a bit smaller. In the cas@eadfoul et al.  to model irregular facades, as demonstrated on the eTRIMS
(2013, this is e.g. the Haussmannian style, ubiquitous irdataset that contains different facade styles. The architec-
central Paris. Strong prior knowledge about this style is imtural principles are designed such that each principle either
bued in the Haussmann-speci c procedural facade grammagroposes new facade elements, re-arranges their position, or

This paper extends our previous woldqrtinovic et al.  evaluates the current con guration of elements. Finally, we
2012, which achieves top results on the task of facade parpose the search for the optimal facade labeling as a sampling-
ing, even without using any style-speci c prior knowledge. based approach. Although the overall pixel accuracy of the
Still, if style information is available, it can be incorporated semantic segmentation is not greatly in uenced by the top
into the system through the usage of extra “architecturalyer, we obtain image labelings that are visually more pleas-
principles”. In contrast to full procedural grammars, theseing, with clearly de ned object boundaries and structures.
principles do not encode the entire facade structure and carhese in turn form a stronger basis for further processing,
be formulated explicitly by laymen. Moreover, we demon-e.g. for deriving style-speci ¢ procedural grammars.
strate how procedural rules and thus simple shape grammars
can be derived from facade labeling, rather than vice-versa.

By avoiding the need for a style prior, we circumvent the  While the overall structure of our system is similar to
manual construction of style-speci ¢ grammars. that of Martinovic et al. (2012, each layer has been up-
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Fig. 2 The proposed three-layered approach to facade parsing.

graded. In the bottom layer, instead of using a xed combi-2 Related Work
nation of Mean-shift Comaniciu and Meer 200Zegmen-
tation and the Recursive Neural Network classi &ocher This section concisely describes the relation between the
et al. 201}, we evaluate various segmentation and classiproposed work and prior art. We have organized this overview
cation algorithms. In the middle layer, we learn a prior into several main topics.
on element locations and calculate the probabilistic detec-
tor output in a more robust way. Furthermore, we learn theScene parsingThere exists a signi cant body of work in
CRF parameters with structured SVMspchantaridis etal. this eld. Some approaches attempt to estimate labels for
2009. In the top layer, we propose a coupled subsamplingeach pixel in the imageShotton et al. 2009r6hlich et al.
and-optimization technique in a generic framework that al-2013. Others depend on an initial segmentation of the im-
lows for addition of new principles. age into super-pixels. Visual features are extracted from the
corresponding patches or regions, and subsequently used for
classi cation. In our work, we opt for the region-based ap-
Our main contributions are as follows: proach in the rst layer, as state-of-the-art results in seman-
tic scene segmentation are achieved by similar approaches.
These approaches ensure labeling consistency by incor-
(1) a new approach for facade parsing, combining low-porating region context in various ways: estimating geomet-
level information from the semantic segmentation, middlesic labels Gould et al. 2009aTighe and Lazebnik 2013p
level detector information about objects in the facade, asising multiple over-segmentatiortsy(mar and Koller 201))
well as top-level architectural knowledge; (2) a rigorous evallearning segmentation treeSdcher et al. 20)1or label
uation on two different datasets which shows that we outpertransfer combined with a simple MREi( et al. 2011 Tighe
form the state-of-the-art in facade parsing; (3) the concepdind Lazebnik 2013b However, facade structures are dif -
of weak architectural principleswhich introduce the high- cult to analyse with solely region-based approaches, as the
level knowledge needed for ensuring architectural plausibilinitial segmentation boundaries might not correspond to ac-
ity. tual object boundaries in the image. Our work puts more
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emphasis on the combination of the region-based approadfionte Carlo (rjMCMC) approach. However, an expert is

with higher-level information, such as object detectors andheeded to set the model parameters and prior probabilities.

architectural knowledge. In contrast, the free parameters of our system are learned
from validation data.

Combining semantic segmentation with object detectors. -~ ain approaches are based on priors on the facade lay-
The effect of positive reinforcement between semantic se%ut. A grid-based layout is a common assumptitor@h

mentation and object detection approaches has been demodh-d Rasmussen 2008hen et al. 20L1Yang et al. 2012
strated in several worksleitz and Koller(2008 use image Han et al. 2012 The work 0f|\/|[]|.|er et al. (2007 aiso as-

regions as context for improved object detectio.n. This is a mes a certain degree of facade regularity, and ts procedu-
orthogonal approach to our work, as we use object detectopgl grammar rules to the detected subdivision of the facade.

to improve the facade labeling. Joint reasoning about pierUnIike the aforementioned methods, our approach poses no
wise labeling and object detectors in a CRF framework Waf;rid constraints on the facade

performed inWojek and Schiel€2008, while also captur-
ing temporal consistency for video sequences. However, th
complexity of their CRF requires slow approximate infer-

ence with loopy belief propagation. The work bidicky models and labeling results, often demonstrated by approaches

et al. (2010, later extended b¥loros et al (2011, disre- where facade reconstruction is postulated as a problem of
gards the temporal consistency, but in their CRF framework P P

] . . nding the correct parameters of a pre-speci ed shape gram-
inference can be performed ef ciently via graph cuts. The

N . mar (Teboul et al. 20102013. Depth cues have also been
second layer of our approach is similar tadicky et al. used in the context of grammar-based parsin§ioyon et al
(2010, but with two key differences. Firstly, instead of us- 9 b i

ing detector outputs as higher-order potentials, we decom(-zma' transforming the problem into a multiobjective opti-

: . . ization, solved with a genetic algorithm. In our work, we
pose them into unary potentials, which are learned base . L
- . advocate the usage of weak architectural principles, a more
on detector output on the training set. This enables us t0

solve a much simpler CRF optimization problem. Note thatexml(;.app(rjoach .thar; usmlg prsde ned gr-zmmjr.s.
the problem of inferring pixel-level cues (or masks) from Object detection has also been considered in grammar-

bounding boxes can also be tackled by using per-exempld?Sed ?pproafhes._MathiaT etal(20113, 3D reconstruc- I
detectors as infighe and Lazebnik 2013 the objects ex- 1ons of Gree IDorlc temples are creat;ed using a spefua—
hibit high variability in appearance. The second advantag’sze_d procedura grammat, 3D Structure-from-Motion (SfM)
of our approach is that we can ef ciently learn the CRF pa_pomt clouds, and object detectors. Several app.roache's use
rameters on the validation set based on the structured SVIQIe'[eCtor outputs to augment the_ bottom-up merit functions
approach o sochantaridis et a{2005. As shown in 6zum-  [0f 9rammar-based facade parsifigk et al. (2019 use a

mer et al. 2008 CRF parameter learning using graph cuts iSS|mple approach where the merit of undetected classes is ze-

tractable, fast, and much more ef cient than methods baseﬁ)ed out_m every det(_act|on. In a work smllar to o_ur rst.two
layers,Riemenschneider et d2012 combines a pixel-wise

on cross-validation, especially for larger parameter vectors. , . X
classi er with Hough forest detectors using a MRF frame-
Urban reconstructionFor an extensive overview of the eld, work. This labeling is then used to create an irregular grid
we refer the reader to the surveyMfisialski et al.(2019.  which is labeled by using a prede ned grammar. In contrast
Our main focus is the semantic segmentation of isolated ari@ this work, we utilize much stronger bottom-up classi ers
recti ed facades. These can be obtained from more gerand detectors, without restricting the nal output to a grid.
eral street-side imagery by approaches suchlra et al. The bene't of relying on shape grammars is that they
(2010; Wendel et al.(2010; Recky et al.(201); Math-  strongly restrict the search space during parsing. Yet, the
ias et al.(2011h. Furthermore, we demonstrate that even ingrammar may not be expressive enough to cover the vari-
cluttered scenes with occlusions such as vegetation or cam@nce in real world data. Furthermore, an expert is needed
our approach can semantically segment the facades. to write the grammars for the relevant styles. Human in-
Xiao et al.(2008 2009 target realistic visualization with  tervention is also required to pre-select the grammar ap-
a low level of semantic encoding in the reconstruction. Inpropriate for each speci ¢ building. The latter requirement
their work, facades are represented with planes or simplean be mitigated by applying style classi efddthias et al.
developable surfaces. On the other hand, many approach2811l that automatically recognize the building style from
employ higher-order knowledge for building reconstruction.low-level image features. Still, using a style-speci c gram-
Probabilistic approaches to building reconstruction startednhar would imply that it needs to be available beforehand,
with the work ofDick et al. (2004, where a building is as- which at least for the moment is a limiting issue. There-
sumed to be a 'lego’ set of parameterized primitives. The infore, in the earlier version of this workMartinovic et al.
ference is performed using a Reversible Jump Markov Chai@012, we did not assume the existence of such a prede-

Grammar-based approaches are quite popular in the eld
legre and Dellaert 20Q&Ripperda and Brenner 200dan
and Zhu 2009 They allow the generation of very clean
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ned grammar. Other authors have also recognized the limthere are several non-building classes. Asang and Forst-

itation of relying on expert-written procedural grammars,ner (2011h, we evaluate our algorithm by performing a 5-

e.g. Dai et al. 2012, replacing them with weaker, or learned fold cross-validation with random sub-sampling. However,

priors. In fact, our guiding principle is to derive procedu- instead of using 40 images for training, we use only 30,

ral grammars based on automatically parsed facades, ratheaving 10 images as a validation set. 20 images are used

than vice-versa. Some interactive work in that vein has alfor evaluation.

ready appearediliaga et al.(2007) infer simple grammati-

cal rules from a user-given subdivision of a buildiBgkeloh

et al. (2010 presented a framework applied on synthetic4 Bottom Layer: Initial Semantic Segmentation

3D data. Very recently, approaches that perform automatic

grammar induction from labeled images have been proposeU‘e purpose of the bottom layer is to provide the initial clas-

(Martinovié and Van Gool 201:3Weissenberg et al. 2013 si cation of each pixel into one of the semantic classes. As

Wu et al. 2013Zhang et al. 2018 asingle pi.xel QOes not contain en.ougr_l information for accu-
In summary, the current state-of-the-art in semantic fafate classi cation, one must consider its context.

cade parsing needs the prior speci cation of a style-specic /N @ patch-basedapproach (e.g. the baseline Béboul

grammar. Our aim is to outperform such systems, without al-(2010) the context of a pixel is an image patch of cer-

needing such a grammar, allowing our approach to deal withgin size, centered on the pixel. Each pixel is then classi ed

a wider variety of buildings. Moreover, the order can be re.Separately, based on the features extracted from the corre-

versed by letting the image parsing control the grammar inSPonding patch. The downside of this method is that the -

ference, rather than using the grammar to control the proce8&! result can be quite noisy, since neighboring pixels can be

of image parsing. The latter selection can be automated KSSigned to completely different classes.

using style classi ers, which, as said, require far less human Another approach is to usegions(super-pixels), i.e. to

interaction than the prior construction of entire grammars. Ségment the image in coherent regions, which ideally share
the same semantic label. Classi cation is then performed

on the region level, which provides three main advantages
3 Datasets description over the patch-based approach. First, since all pixels within

a region share the same class, the result is generally less
Our approach is evaluated on two datasets, the “Ecole CeRyisy. Second, the dimensionality of the problem is signi -
trale Paris Facades Database Benchmark 200eBqul 2010 cantly reduced as the number of regions in the image is typ-
and the eTRIMS databas&drc and Forstner 2009The jcally two orders of magnitude lower than the number of
ECP database provides labels for multiple facade elementﬁixms_ Third, coherent regions can provide a stronger clue
while the e TRIMS dataset also contains non-building classegy 5 classi er e.g. by their speci ¢ shape. Yet, any errors
such as vegetation. Since we are primarily interested in thg, ine segmentation step will propagate to the classi cation,
accurate parsing of building facades, our main focus will b&jnce the nal labeling is restricted to follow the super-pixel
on the ECP database. We additionally validate our approagh,ndaries.
on eTRIMS and show that we outperform previous state-of- |, our work, we opt for a region-based approach, as state-
the-art resullts. of-the-art results in semantic scene segmentation have been

The ECP Databasecontains 104 annotated images of 5c-hieved by similar approacheSquld et al. 2009aTighe

single recti ed and cropped facades in the Haussmanniagnq | azebnik 2013&umar and Koller 201 Our experi-
style. The dataset has 7 different labéls- {window, wall,  ents validate this choice, as we show in Secfiofhe im-
balcony, door, roof, sky, shppWe use the new and more pjementation of a region-based classi cation approach con-
precise set of annotations providedMygrtinovic etal.(2012. gists of three steps: segmenting the images into regions, ex-
Our evaluations are performed with a 5-fold cross—validatioqracﬁng features from the regions, and using a classi er to
on this dataset. For each fold, we use 60 images for traininghain probabilistic estimates of classes, or labels, for each
20 for validation, and 20 for testing. region. In this section we investigate how different segmen-

The eTRIMS Databaseprovides accurate pixel-wise tation algorithms and classi ers affect the speed and quality
annotations and contains 60 images. Unlike the ECP datasgf facade labeling.

the images are not recti ed and the facades uncropped. We

use the automatic recti cation algorithm afebowitz and

Zissermar(1998 as a preprocessing step. To allow for a fair4.1 Image segmentation

comparison to previously reported results, we un-rectify our

output prior to evaluation. The labels of this dataget One of the most important choices in region-based segmen-
{building, car, door, pavement, road, sky, vegetation, win-ation is the number of regions created. We de ne rinx-
dow} are quite different compared to the ECP dataset, agmum achievable accuracy (MAAs the accuracy (pixel-
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average or class-average) obtained by using an oracle clasdi3 Classi ers

er, which assigns each region the label of the pixel majority

in the ground truth. Clearly, a pixel-based oracle classi erGiven its feature vector, each region needs to be assigned
achieves theMAA of 100%, since every pixel is classied to one of the semantic classes described in Sedidive
separately. By using region-based segmentation we intraonsider ve different multinomial classi ers:

duce the constraint that all pixels in a single region share the ) . ) .

same class. On the one hand, a more ne-grained segment&—‘ LOG: Multiclass logistic regression classi ég6uld et al.
tion tends to result in a high&tAA.On the other hand, clas- 20090 .

si ers tend to perform better on discriminative and therefore 2. CRF:An gxtensmn of LOGGould et al. 2009b

larger regions. Even though coarse-grained segmentation % MLP: Multl!ayer Perceptronltemuth et a}I. 1998
better suited for classi cation purposes, this process intr0-4' S,VM: Multiclass Support Vector Machin€bang and
duces errors when semantically different regions merge to- Lin 2011) .

gether, which reduces tHdAA Intuitively, nding a good 5. RNN: Recursive Neural Networlspcher et al. 2071

segmentation of the image is equivalent to discovering thehe classi er output is a con dence score for each class.
optimal trade-off between region size and discrimination poThese scores can be transformed into a probability distribu-
tential. tion using a softmax function.

Over the years, a large number of image segmentation For the rsttwo methods,_ a boosted one-vs-all classi er
algorithms have been develop&zbmaniciu and Meer 2002 IS learned for each class using Adaboost. Then, the outputs
Felzenszwalb and Huttenlocher 20@%hanta et al. 2010 of the classi ers are used as features for learning the mul-
Arbelaez et al. 201;1Van den Bergh et al. 20)2In this ticlass logistic model (LOG) with a linear predictor func-
work, we chose to evaluate three dissimilar algorithms orfion- The CRF model is obtained by adding a pairwise term
the task of facade segmentation. The mtean-shift(Co- between neighboring segments, which has a smoothing ef-
maniciu and Meer 20Q2is a popular algorithm that was fect. For more details about the implementation, please con-
demonstrated to perform well for facade parsing in the presSult Gould et al(20099. The multilayer perceptron we use
vious version of this papemMartinovic et al. 2012 Sec- 1S @ feed-forward arti cial neural network with a single in-
ond, we evaluate one of the fastest segmentation algorithn#¥!t, hidden and output layer. The number of neurons in the
to date,SEEDS(Van den Bergh et al. 20)2This method input layer is 225, equal to the number of features. The out-
was shown to have competitive results while running in realPUt layer contains as many neurons as there are semantic
time. Finally, the third algorithm in our comparisong®b c!asses. US|r_19 a ruIe—of—.thumb that states that the optimal
by Arbelaez et al(2011), which sacri ces running time for S1Z€ of the hidden layer is usually between the size of the

an accurate calculation of the segmentation tree. In order #PUt and the size of the output layers, we set the number
perform a fair comparison to the other algorithms, we con®f hidden neurons to 75. As the SVM classi er we use the

sider only a single level in the gPb tree. publicly available one-vs-one multiclass SVM with a Gaus-
sian kernel function@hang and Lin 2011 The parameters
C andg are determined from the validation set. Finally, the
RNN classi er was shown to perform well for the seman-
tic segmentation of general scen&o¢her et al. 20)1and
building facadesNlartinovic et al. 2012. In line with (Mar-
tinovic et al. 2012, we set the length of vectors in the se-

mantic space to 50.
4.2 Feature extraction

We use the same feature extraction algorithm in all of our ex4.4 Analysis

periments. Following the procedure @buld et al.(20093,

we extract appearance (color and texture), geometry, and I®y setting the average number of regions per image to a
cation features for each region. This choice was motivatedked value, we evaluate the interplay between different seg-
by the fact that the same features are used in several tomentations and classi ers. Second, we select the best com-
performing scene segmentation approackesi(d et al. 2009abination of segmentation algorithms and classi ers, and in-
Kumar and Koller 2010Socher et al. 2001 Additionally,  vestigate how changing the number of segments affects the
the publicly available implementation in form of the Stair classi cation accuracy. For completeness, we calculate both
Vision Library (Gould et al. 2009penables us to quickly ex- pixel-wise (PW) and class-wise (CW) accuracies. The for-
tract features from pre-segmented facade images. With dener is de ned simply as the percentage of correctly classi-
fault parameters, this results in feature vectors of size 225. ed pixels. We de ne the CW accuracy as the unweighted
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Fig. 3 (a) Pixel-wise and (b) class-wise accuracy of different segmentation algorithms and classi ers on the ECP dataset. The results are calculated
as the mean, and error bars as the standard deviation of results calculated from ve cross-validation folds.
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Fig. 4 The effect of segmentation coarseness on (a) pixel-wise and (b) class-wise accuracy of the oracle and SVM classi er on the ECP dataset.

average of all class accuracies (the latter being the % of pixsmall (around 1%), and one may opt to use SEEDS when

els of a class that were correctly classi ed), which providesspeed is of the essence (as it may very well be when deal-

an insight into classi cation performance on smaller classesing with complete city modeling). Mean-shift and gPb per-

All of the presented experiments are performed on the ECRrmed similarly in each of the ve classi er scenarios. Since

dataset. Mean-shift segmentation is much faster to compute than gPb,
we select it as our preferred segmentation algorithm.

4.4.1 Segmentation and classi cation
Additionally, the data reveals that our method is quite

Keeping the average number of segments per image equalbust with respect to the choice of classi er. As expected,
for all three segmentation algorithms 690 segments), we there is a noticeable difference between the maximum achiev-
evaluate the maximum achievable accuracy, as well as claable accuracy (MAA) and the results obtained with the ve
si cation accuracy achieved with each of the classi ers fromclassi ers. The gap becomes even more apparent when con-
Sectiond.3. The results obtained are shown in Fig@re sidering class-wise accuracies. This is due to the unbalanced

Generally, using SEEDS as the segmentation algorithrdatasets, where the number of pixels of each class label varies
results in the lowest classi cation accuracy. However, thesigni cantly. By de nition, class-wise accuracy disregards
difference between SEEDS and its competitors is relativelyhis variation.
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We can see that the CRF model bene ts from the adallowing better discrimination. In this section, we demon-
dition of pairwise terms, compared to the LOG classi er. strate how detectors are integrated into our system and argue
RNN outperforms the basic MLP model, but the results dahat their usage bene ts the overall labeling quality.
not justify the extremely long training time of RNN (around Our bottom layer provides a probability distribution over
24 hours). Unlike other methods, which classify each of théabels for each region (segment) in the image. These regions
segments separately, RNN also creates a hierarchical paraee determined using xed segmentation parameters for all
tree of the image by recursively combining neighboring seginput images. As shown in Figui& even with the perfect
ments. However, existing RNN-based approact@&sclier MAA oracle, we can maximally reach 92% pixel accuracy
etal. 2011 Martinovic et al. 2012do not exploit any knowl- and 90% class accuracy. By using object detectors in the
edge from the tree during classi cation. Additionally, we second layer, we not only provide information from a sec-
achieved no improvement by using higher levels of the hiond source, but also allow our nal labeling not to be con-
erarchy, raising further questions about the usefulness of thetrained by the initial segmentation boundaries. This is espe-
tree. Finally, the SVM classi er emerges as the winner, as itially apparent for the case of window detection, where the
achieves better results than its competitors both in terms ofitial object boundaries often do not coincide with image
pixel-wise and class-wise accuracy. gradients.

One may argue that although the SVM classi er has the From all classes presentin the ECP and eTRIMS datasets,
best performance in the rstlayer, some other classi er mighsome are best discriminated by their texture and calioy, (
provide better bottom-up information to the other layers ofgrass road...). Other classes, suchwsdow doorandcar,
the system. We tested this hypothesis with the CRF andre characterized by their distinctive shapes and sizes, and
RNN classi ers, but obtained no improvement over SVM. can therefore be discovered by classical object detectors.
For these 3 object categories we trained object detectors, ex-
plained in more detail later, with training data coming from
different sources. The total number of windows in the ECP
Eataset is large enough to train a detector whicépisci ¢

The results in the previous section were obtained by settin X - ,
the average number of segments per image to a xed valu 0 the Haussmannian style. Training a style-speci ¢ detector

Now we evaluate the effect of changing the segmentatioﬁ‘lso bene ts from the fact that Haussmannian windows and

coarseness while xing the best performing segmentatioﬁjoors samples do not show much variance in appearance. In
- classi cation pair, i.e. Mean-shift and SVM. By chang- contrast, the eTRIMS dataset does not follow a xed archi-

ing the minimum region size parameter in the Mean-shiﬂtecmral style and shows a high variance of object appear-

implementation, we obtain 7 different levels of coarsenes$ €S At the same time, eTRIMS contains fewer samples

ranging from 1906 to 283 segments per image. per ObjTeﬁt Crlfsr? (1016 fqr windO\é\{s, i(BjS fpmoors and 67 lfor
The classi cation results in Figuré show that the max- cars). The higher variation combined with fewer examples

imum achievable accuracy steadily drops as we use coars@_?éﬁ\jstrzm;ng ;eas%r;abll(_ahdet?ctor modelsd %y tus:cng only
and coarser segmentations. The classi er performance fof ata inteasible. 1herelore, we used data from an

lows a different trend, as its performance peaks around a?]utside source to train style-agnostic window, door and car

optimal number of segments. While large segments imrogetectors. We call these detector modggericmodels (as

duce errors by combining neighboring objects into single reppposed tospeci ¢ models), as the data used for training

gions, ne segmentations produce small image regions Whic(igﬁ_na'cld?;a) d_o«zs no';follow 3ny Spec CI style_. As ?h?wn
are not discriminative enough for the classi er. However,In ablel, the window, door.and car samples originate tfrom

this effect is prominent only when dealing with rather ex- /arlous sources, €.g. from a dataset of Belgla_n facades, or
treme numbers of segments, as we obtain similar resultféom a general-purpose car datasets, such.a:dg et al.
from 500 to 1000 segments per image. Therefore, we Sez_OOD.

lected the middle level of coarseness in Figdiramounting

to 691 segments per image, on average. 5.1 Object Detectors

4.4.2 Number of segments

Selecting the appropriate detector is not a simple task, as
5 Middle Layer: Introducing Objects Through object detection is still an area of very active research. In
Detectors recent years, many top-performing object detection systems

have been based on the well-known deformable parts mod-
In the middle layer, we enrich our labeling pipeline by local- els (DPM) fromFelzenszwalb et a{2010g. These detectors
izing facade elements directly through the usage of objecthow excellent detection quality as demonstrated, for ex-
detectors. Such detectors search for coherent structures ttahple, on the yearly Pascal VOEveringham et al. 2090
can span several of the previously segmented regions, thgballenge. Using multiple components and parts gives these
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Table 1 Overview of the data used to train the generic detectors.

Trained on
— - Evaluated on
positives negatives
windows 3924 from Belgian facade images 8343 from pascalVOC, eTRIMS/ECP
doors 447 from Belgian facade images| 8343 from pascalVOC,  eTRIMS
cars (frontal) | 516 front- and rear-view car images 4268 from pascalVOC|  eTRIMS
cars (side) 344 from (eibe et al. 200y 4268 from pascalvVOC|  eTRIMS

detectors an advantage when detecting object classes char-
acterized by a considerable amount of variation in their spa-
tial extent. Conversely, when the object class is character-

ized to contain roughly rigid elements, classi ers based on \

a single template seem to be more appropriate. Lately, ap- Ty

proaches based on the integral channels classi er proposed \ \

by Dollar et al.(2009 have demonstrated excellent quality —

(Benenson et al. 20)&nd detection spee@énenson et al. - % ve \_‘

2012. The latter detector, dubbeédery Fast by the au- —
thors, not only reaches 100 Hz on the task of pedestrian de-
tection, but also generalizes well to other classes. For exam- -
ple, in the German traf ¢ sign detection challend#o{iben
et al. 2013, one of the winning approachelliéthias et al.
2013 was based on this detector.

Fig. 5 Comparison of the dataset-speci c DPM avidry Fast on the

We decided to compare théery Fast and the DPM task of window detection. The plot shows the mean false positive per

. . . image (FPPI) versus miss-rate, averaged over 5 folds.

detector for the window detection task, using the follow- ge ( ) g
ing setup. For both detectors we train one model in each
of the 5 folds of the Haussmann-speci ¢ window training
data, as described in Secti@ For each fold we use all —
available positive training samples, while patches not over- B
lapping with windows are used as negative examples. Ad-
ditionally, we augment the negative set with 8383 images \\ \\ \\

/

not containing windows from the Pascal VOC dataset. Speed \\ T

comparisons were performed on an Intel Core i7 870 CPU

+ Nvidia GeForce GTX 590. - PR ¢ \:
Deformable part-based model detector (DPM) The - LS R Ll

DPMs are trained using the latest release (versiorGiy) ( _ v wst w ks

shick et al. 201pwith default settings. The number of com- - ! (ﬁ)t . :$' I ;2

ponents is set to 1. The training took roughly 5 hours, and

the testing speed of8 sec/image can be sped up by a factor

of 10 15 by using a cascadé&€lzenszwalb et al. 201pb ) _ _ _ _

We noticed that training this window detector with 2 or moreF'g' 6 Comparison of speci ¢, generic and combined window detec-
g ; o tor on the ECP dataset. The combined detector is trained on the joint

components only reduces the overall quality while increasyaining set of style speci ¢ and generic window samples.

ing the training time.

Very Fast detector: We use the publicly available open
source implementation of théery Fast detector Benen- The performance of all detectors is evaluated using the
son et al. 201R The training is initialized by using a feature Pascal VOC overlap criterion of 50% overlap over union.
pool size of 30000 random features. We perform 4 round&igure5 compares the mean detection rates for the task of
of training (2000 stage classi ers), where each round is fol-speci ¢ window detection on ECP, i.e. detectors trained with
lowed by bootstrapping 5000 hard negative samples. WittHaussmann windows. For each of the 5 folds of the ECP
this setup, training lasts around 8 hours. The testing timéelataset we trained a DPM detector an¥ery Fast de-
of 2:1 sec/image can be sped up by a factor of around 4€ctor. All detectors are evaluated on their appropriate test-
by approximating nearby scales and using a soft cascade, g sets and the results are then averaged over the 5 cross-
described in the original paper. validation folds.
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-~ only 1016 window and 85 door instances from many dif-

" : ferent architectural styles, which leads to a high variance of

' e.g. appearance and aspect ratio. A common strategy to han-
dle such diverse object classes consists in clustering the data
into subsets (e.g. by their aspect ratielzenszwalb et al.
20103) and independently training one detector for each
subset. This would further reduce the number of samples
used for training. We therefore did not train dataset-speci ¢

P! | fr— : detectors on eTRIMS. Instead, we use the eTRIMS dataset
| | H el ) , = — as a proof of concept which shows that, even when using
— o — N - |E =i S generic detectors trained with data coming from different

= " : T sources, we can improve the labeling quality in our middle
e *7 R = - layer.
v - -.] 2 —

1 i v To recapitulate, we use style-speci ¢ detectors if there

' = are enough samples in the training data. Otherwise, we train
generic detectors. Still, we can gain some insight by evalu-
ating the performance difference between detectors trained
on style-speci ¢ and generic input data.

17

In Figure 6 we compare the generic and speci ¢ win-
dow detectors on Haussmann. At 1 false positive per image
[vivre] (FPPI), the generic detector discovers around 70% of the
windows, while the speci ¢ detector nds more than 90%.

Even though the generic detector could be used to im-
Fig. 7 Example detections of théery Fast speci ¢ window detector. prove window labeling in the mlddle Iay(?r, the speci ¢ de- )
The color encodes the con dence of the detection from high con dencdector has much better detection rates with fewer false posi-
(red) to low con dence (black). tives. On the other hand, the advantage of using a generic de-
tector lies in reduced training times when the system should

The results reveal that the single template-bagedy be applied to many different styles. Instead of always re-

Fast detector performs better than DPMs on this task. Thiérainir)g style-speci ¢ det_ect_o_rs -and _ha_Lving to knoyv which
behavior may be explained with the fact that the window ancftyle is relevant for any individual building - one might opt

door classes do not consist of independently moving part%(.)r collecting a large set of generic detectors for different

Furthermore, image recti cation leads to axis-aligned win- acade elements and just select which detectors to use for

dow corners. Due to the better detection quality and spee%pec' ¢ sty!es. Th,e detector obtained bymbining speu ¢
we opted for thevery Fast detector in all following de- and generic training data outperforms the generic detector,

tection experiments. Figuréshows some example window how;veroll';_does not' mitCh the q“a"tY (;f the spehm c d'et.ec-
detections of thé/ery Fast detector. For the task of car tor. By adding speci ¢ Haussmann windows to the training

detection, DPMs might have a better performance due to th%a;a,r\]/ve g;et a.better represerr]ltatlon OT H;lussmann v(\jnnld(())ws
higher shape variability of the car class, but ourexperimentghn t r:—:re r(])re(;mgrovquvert e g(_aner_lcd etector To el. hn
indicate that the/ery Fast detector performs adequately the other hand, by adding generic window samples to the

on the few car samples in the eTRIMS dataset, where Carl-sjaussmaqn samples, we add a m“‘?h_ higher variability to
are usually shown either from the side, front or rear. an otherwise quite homogeneous training data. We believe

that this variability cannot be exploited, as the more gen-

eral window detector introduces new false positives rather
5.2 Generic and speci ¢ object detectors than detecting additional windows that were missed before.

In conclusion, style-speci c detectors perform better than
The ECP dataset contains 3096 windows and 109 doors, egeneric detectors, especially when the data variation is lim-
hibiting the style of typical Haussmannian facades. Hencdted (e.g. for Haussmann windows). Generic detectors can
all windows and doors have similar appearances and amdill be used when it is infeasible to re-train detectors for
therefore well suited to train Haussmann-speci ¢ windowevery new style or when insuf cient style-speci c training
and door detectors. On the other hand, eTRIMS providedata is available.
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Fig. 8 (Best viewed in color) Learning label distributions for the window detector. Window detections on the ECP validation set are sorted by their
score in descending order. High-scoring detections (top-left) provide a much stronger prior than the low-scoring detections (bottom-right)

5.3 Learning detector label distributions Let us denote the set &f images in the validation set
with XY = fx,g1 n N, and their corresponding ground truth

In order to merge the information coming from the objectlabeled images witN¥ = fyn,g; n n.

detectors with a semantic labeling of an image, we need After running a detectady on the validation set, we ob-

to transform the detector output (typically a set of bound-ain a set oMM, detections

ing boxes with scores) into per-pixel label probabilities. The y .

simplest approach would be to simply set the probability o2k = fdjJ dj =(bjirjiyj)ar | my )

each pixel within a detgction to 1 for the class corresponding e each detectiat) is characterized by its bounding box
to the detector (e.g. window), and zero to all other classe%j, score (detector con dence) and the labeled ground

However, window detections often cover othe_r pa_rts of thetruth corresponding to the image where the detection was
facade, such as a balcony or wall. The classi cation acclzy nd: yi 2 Y. The detections in the s@& are sorted by
Yi : k

racy of balconies and walls would thus be negatively af-their score in descending order

fected. To illustrate this, Figuré shows an example out- Then, for each detectioty 2 DY, we create a sub-image

put of the window detector, where the score of each detectcgj by extracting the area of the corresponding ground truth

is color-coded (brighter means higher detector con dence)l‘abely- covered by the bounding bax, denoted as
Furthermore, not all detections ought to have the same in u- ! '

ence: we want to signi cantly boost window probabilities in S; = y;[b;] 2

bounding boxes of high-scoring detections, but to be more )
conservative with low-scoring detections, since they might ~ 1he extracted sub-images are all subsequently rescaled
be false positives. to the same size using nearest-neighbor interpolation. For

LetD = fdgy « « be the set oK detectors. In the ECP the normalized widthu"™ and height/"®™™ we chose the
value of 100 pixels, since most detection sizes in our dataset

dataset we use only a window and a door detectoK so i ’
ere on the same order of magnitude. The normalized sub-

2. We propose a novel way of learning the detector labelV
distributionsP%(1jx;), i.e. the probabilities that a given point images are denoted as

X ina tgst image belongs to one o_f the sgmantig Ialb%!‘ﬁ quorm = NNResizgS;;v"°'™ 1o )
according to the detectak. To achieve this, we investigate

how detections of a certain score spatially overlap with the By construction, the normalized sub-images contain a
ground truth labeled images in the validation set. subset of labels (classes) Next, we creatgy j binary label



12

Markus Mathias et al.

masks for each sub-image, de ned as
B\ = 4(S"™; 8l2Y (4)

wherel, is the indicator function selecting only pixels with

learned label distributioQyj) is resized to t the bound-
ing boxbj, denoted as

Qﬁ,ﬂi(zﬁ% NNResiz€Qunj); Vj; Uj) (9)

the label. To obtain a smooth label distribution, we averagewhereu; andv; denote the width and height of the detection
the binary label masks of detections with a similar score. Fopounding boxb;, respectively. Finally, the pixel probability

each detection, we considgmneighboring detections in the

original sorted list of detections. L¢§ = max1; j %). We
de ne
| 1]0°+g |
1=Jo

distributions inside the bounding box are overwritten with
the learned distribution, written as

P(1jx) = QuR(H1):

The process is repeated for each detectipin the setD}.
Note that each position withiR% can be overwritten maxi-

8% 2 bj;l2Y (10)

as the per-pixel probability that a given pixel in the boundingmally once. There are no overlapping detections within one

boxbj is labeled withl. The obtained); is a valid proba-
bility distribution, since

a Q|

12Y

(6)

Jv'u

whereJy,, is a matrix of ones. In our experiments we set

detector output due to non-maxima suppression. Detections
of different object classes are handled by repeating the pro-
cess for each detectdg, resulting in several learned priors
Pk,

g= 200, as there are on average 700 detections in the validg:4 Learning facade label maps

tion set. Very small values @fresult in distributions that are
no longer smooth, while by using higher valuegdhe de-
tection score starts to lose its effect, as@jlbecome rather
similar.

Examples of the resultin@; are visualized in Figur8
for | 2 f windowwall; balcony (other labels are not shown

In the previous section, we learned the label distributions
only for pixels covered by detection bounding boxes. For
other pixels, we assumed a uniform label distribution. How-
ever, it is logical to assume that the probability of a certain
label also depends on the relative position of the pixel in the

for clarity). For high-scoring detections (top-left corner of image. For example, one would exps&l pixels to appear
the image), our approach learns that the upper part of a demostly in the upper parts of the image, while tsigopor

tection should be assigned to théndow label, while the
lower part often corresponds to thalconylabel. On the

road classes normally appear near the bottom of the image.
We can learn such a spatial prior in the formfatade

other hand, for lower-scoring detections, the effect of falséabel mapshy analyzing the ground truth labels in the train-

positives ring onwall areas is so prominent that tinall
label probability actually surpasses timmdowlabel. As we
will see, the effect of false positives on the nal labeling will

be kept at bay, since our system hesitates to assign high labe

probabilities to low-scoring detections.
We can consider these learned label distributions as
look-up table during the testing phase. In a test ime6,

we want to de ne the label distribution for each pixel, given

the detections of a single detectdy. Initially, we assume

ing set. First, we resize each ground truth imggé&om the
training sety! to a common sizeu®™f = ynormf = 500).
The normalized ground truth image is de ned as

horm _

Yn NN ReSiZan;Vnormf; unormf)

(11)

@ Similar to the previous section, we cre@Yg binary la-
bel masks de ned as

Ch=L(yp™; 8l2Y (12)

no prior knowledge and assign a uniform label distribution

to every pixel. Let

P (ljx) = ]i 8x 2 xSt 2y (7)

Y]
be the initial probability distribution of labels in the image,
wherel is the predicted label for pixet. After running the
detectordy on the evaluation set, we obtain a seiff de-
tections

DE= fdjj dj=(biirisy)on j e (8)

For every detectiod; in setDg, we nd the detectiortyyj)
from the seD}, with the closest score 1g. Its corresponding

which are then averaged over the training set, obtaipdrjg
facade label maps

t
18

=Wa

n=1

R! cl; 8l2v (13)
whereN! is the number of images in the training $€t
Figure9 shows the learned label maps for the ECP and
eTRIMS datasets. The nal distribution of labels in an eval-

uation imagex® with dimensions/ andu€ is given by

P' (Ijx) = NNResiz€R;;VeW®); 8% 2 x%12Y (14)
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Window Wall Balcony Door Building Door Pavement
Roof Sky Shop Vegetation Window
(a) ECP (b) eTRIMS

Fig. 9 Learned label maps from the training set in one cross-validation fold, by averaging over the different facades. Brighter colors denote higher
label probability. Note the high level of regularity and alignment in the ECP dataset compared to the more washed-out probabilities for eTRIMS.

5.5 Incorporating detector knowledge into CRFs P and prior facade label map potentigds were de ned in
Sectionss.3and5.4, respectively. Parameteng®dwdet and

In order to merge the labels coming from the bottom laye/'a® weigh the relative importance of segment classi cation,

with those introduced by the detectors from the middle layerdetector label maps, and facade label map priors. Note that

we place a 2D Conditional Random Field (CRF) over thgw'abj = jy j, as we weigh each facade label map separately.

image pixels. We seek to minimize the CRF energy, de ned  Applying the CRF model requires us to nd the opti-

as the weighted sum of unary potentials for each node anghal labeling of a test image, given the set of parameters

all pairwise potentials between neighboring nodes: The approximate solution to this problem can be found ef -
. o . ciently using graphcut-based metho8sykov et al. 200},
E(yxw) = % Fs(yix;w) (15) since our CRF model contains only unary and submodular
s o e u pairwise terms. Additionally, due to the usage of the Potts
ta a Felnyixx;w) (16) model, thea -expansion minimization guarantees a solution

X Xj X . sl e
: that is within a factor of two of the global minimurB¢ykov

wherex; is an image pixely; 2 Y represents the variable et al. 200). In the next section we describe how the param-
encoding the predicted labeV,= fwse%wdet:wab:wPargis  eter vectom can be learned from the validation set.

the set of CRF parameters, and the relatiorepresents the

4-pixel neighborhood. We use the standard Potts model as

the pairwise term, which encourages neighboring pixels t®.6 Learning CRF parameters

take on the same label. This has the effect of smoothing the

output, with the degree of smoothing dependent on a paranihere already exists a body of work on learning parameters

eterwP@" The pairwise term is de ned as in random eld models. Most of these approaches use ei-

( ther a form of cross-validation or piecewise training. A good

Drvn vy~ O if yi =y overview of parameter learning in CRFs can be found, for
ROy 16xwW) = wPar:  otherwise. (17) example, inKumar et al.(2009 andNowozin et al.(2010).

We decided to follow the approach®fummer et al2008),
The unary term is a linear combination of the low-levelwhich is an ef cient technique of max-margin learning in
information from the segment classi cation, the learned priogrid graphs, e.g. images, based on the structured support

facade label distributions, and the detector outputs: vector machinelsochantaridis et a2005. This method
ES(viixiw)=  welogPs (vij x represents parameter estimation as a maximum margin learn-
O i) K 9P (1) ing problem, formulated as
& wWi'logP%(y; j x) (18) max g st (19)
k=1 w:kwk=1
w,22logP' (vi j X)) E(Y;%mW) E(yn;Xn;w) g 8y6yn 8n

Here,PS is the per-pixel probabilistic output of the bot- wherexp is an imagey, its corresponding ground truth, and
tom layer. Since the classi cation in the bottom layer op-nindexes all instances in the training set.
erates at the level of segments, all pixels within the same The learning algorithm constrains the energy of the ground
segment share the same probability. The detector potentiaiquth labelingy,, to always be smaller than any other possible
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labelingy by a marging. Since there is an exponential num- whereF s is de ned in Eq.18. The resulting problem of min-
ber of possible image labelings, it is not feasible to solveémizing E%can still be solved ef ciently using -expansion,
the problem formulated in EdqL9. The solution proposed as the energy remains submodular. Every labeling that vi-
in Szummer et al(2008 works with a much smaller subset olates the margin constraint in EZ1 is added to the con-

of labelingsf S,g, i.e. a constrained set. For each image, astraint setS,, and the parameter vector is updated by
lowest-energy labeling is found using an ef cient method, minimizing Eq.20. The process is repeated umtiremains
such as graph cuts. If this energy does not satisfy the maunchanged. We have implemented this approach using the
gin, the labeling is added to the subSE?. After allimages SV MU software fromTsochantaridis et a(2005).

are processed, the parametersare updated to satisfy the

newly added constraints, and the process is repeated. Since

there is only a nite number of labelings that can be addedg Top Layer: Using Weak Architectural Principles

the procedure is guaranteed to converge.

The above formulation is further improved by enforc- The previous two layers propose a generic approach to se-
ing a larger margin when the labeling is far from the truth.mantic labeling, which is initially based on super-pixel clas-
This difference between desired and candidate labeling ca$) cation and subsequently enriched by object detectors. Al-
be expressed in terms of@ss functiorD(yn;y). By adding  though the results of the rst two layers are quantitatively
slack variables¢ to account for constraint violations and convincing, the effect of the initial segmentation is still present
rescaling the margin as proposedlskar et al(2009, the  jn the output. This manifests itself in the jagged boundaries
following quadratic optimization problem is obtained: of some elements as well as the missing or misplaced fa-

o1 , C& .. cade elements. Hence it is dif cult to use the output of these
i 2 kwk?+ N Slxn St:8y2 S 8n (20) layers to derive convincing facade models with clearly de-
oy - oy - . ned boundaries and structures. Therefore, in the top layer
E(y;xmw)  E(Yni Xm W D(yn; X 21 - : .
(¥ Xniw) (Ynini W) 0 (Yniy) o (21) we add meta-knowledge about buildings without de ning a
Xn

full facade grammar, in contrast T@boul et al(2013. This
whereC is the regularization parameter aNds the number  meta-knowledge is expressed through the concepteafk
of training images. A common approach is to use Hammingarchitectural principles
|OSS, i.e. the number of mislabeled pixels inan image, as the An important advantage of these guide“nes over proce-
loss function. However, our datasets do not have a balanceg,rg] grammar rules is that the former are directly observ-
distribution of classes, since some classes only constitute gyje in the images, whereas the latter keep some concepts
small percentage of total pixels (e.g. teor class). Mis-  implicit. Even if the combined application of a number of
labeling the small classes does not signi cantly change thgrammar rules may lead to, for example, vertical alignment
overall pixel accuracy, however the class-wise accuracy igf windows, there might be no single rule explicitly pre-
severely reduced. Therefore, we modify the loss function t@cribing such alignment. An issue with style grammars can
take into account the frequencies of classes in each grouRHerefore be the indirect coupling between what they specify
truth image, producing a greater loss when a low-frequenc¥nd what can be easily veri ed in the images. Our approach
label is misclassi ed, resulting in a weighted Hamming loss:31so enables the modeling of irregular facades, as we use
i 1 architectural concepts as guidelines, not as hard constraints.
Dlymy) = a f ")y 6 vl (22)  some of the proposed principles are quite generic and can be
i =1 o , 1 re-used for many different facade styles, while others were
Whe_re[:] is the indicator funct|on,_ and “(y) represents intentionally designed with a certain style in mind, e.g. the
the inverse frequency of the labglin the ground-truth im- Haussmannian style. Similar to object detectors, most prin-
ageyn. ) . ciples are formulated for the objects in the facades (win-
To calculate the mosfc V'O'?t‘?d _constralnt in Bq. we dow, balcony, door), as these elements have a clearly de ned
must. nd t(r;e labelingy which minimizes the re ned energy boundary. In the end, the interplay between data evidence
functionE", de ned as and various principles will in uence the placement, modi -
EAY:Xn;W) = E(Y:Xn;W)  D(Yn;y) (23)  cation or removal of facade elements.
As shown in Szummer et al(2008, the loss function can
be 'absorbed' into the energy function if it decomposes the
same way as the energy. Since the weighted Hamming 10$81 overview
decomposes over image pixels (nodes in the CRF), we can
transform it into an additional unary potential. This corre-Qur rst task is to de ne how the idea of weak architectural
sponds to augmenting the unary potentials in the CRF: principles can be integrated into a generic system which al-
Fo(yiixi;w) = Fs(yijxi;w) f l(yi”)[y{1 6 vi (24) lows for easy modi cation and addition of these principles.
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Fig. 10 A high-level overview of the top layer. The blocks highlighted in yellow depend on weak architectural principles, see text for description.

Therefore, we employ a modular design, where each prinplesgradethe proposal con gurations throudf" 9 (Sec-
ciple has a well-de ned interface and may be individually tion 6.2.2. Finally, certain principles are usednodifythe
activated depending on the dataset at hand. facade element in the post-processing step (Seétidi3.
Figure 10 shows the overview of our proposed system.
The rst step is to generate proposals of facade elementg 1 1 Extracting initial facade elements
(bounding boxes with corresponding labels) from the output
of the middle layer (Sectio6.1.]). Let us de ne a facade Starting from the pixel-wise classi cation output of the mid-
con guration F as a set of facade elements which constigje |ayer, the rst step is to generate the initial con gura-
tute a valid facade (i.e. no overlapping windows). The mostijon of facade elementSy. This con guration should con-
probable interpretation of the facade from the previous layefain facade elements such as windows, doors, or balconies.
is selected as the initial facade con guratibg, while non-  More precisely, each element is determined with the bound-
selected elements (such as overlapping windows) are plac@gy box and its corresponding label. However, our middle
in a set of alternative facade elements, @oal Po. layer produces a labeled imagk?, as opposed to discrete
The initial con guration is not necessarilly the correct elements. To generate facade element proposals, we start by
one, as it might contain false positives. To remove them, wesing connected components in the label iyigpand de ne
perform random subsampling, retaining a subset of elements minimal bounding rectangl®, around thez-th connected
in the con guration, and moving the rest to the pool of alter-component.
native elements (Sectidhl.9. The subsamplingisrepeated  This minimal bounding rectangle is often too large com-
in n" rounds to increase the likelihood that, in at least ongared to the actual facade element. Some initial super-pixels
roundr, the subsampled con guratidf contains only true  oat over the object's real boundaries, which leads to over-
positives. Based on the subsampled con guratign the  sized minimal bounding rectangles. To mitigate this prob-
pool P is extended by new facade elements (Sedfidn3.  |em, we adjust the edges of each rectafylby maximizing
An optimization method is proposed to select the subset ahe coincidence with the edges of the connected component.
elements in the augmented p&lwhich best complements Each edge of the current rectangle is adjusted by shifting it
the subsampled con guratioR; (Section6.1.4), given an  pixel by pixel towards the center of the rectangle. Dat
energy functiorE°"9. The best facade con guratidf®™  denote the number of pixels inside Bf belonging to the
over alln’ is then fed into a post-processing step (Sectiorconnected component. We limit the search range with the
6.1.9. constraint that the number of connected component pixels
The weak architectural principles are used for three difinside the new rectangle must not fall belol®t percent of
ferent purposes in our system, see TahI€irst, they can D,. The threshold M was set to 6 in our experiments.
proposenew elements (Sectidh2.1). Second, some princi- At each position of the element edge, we calculate the over-
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lap between the edge and boundary pixels of the connectetkamples in SectioB.2.1). The facade elements proposed

component, divided by the edge length. by these principles are then simply addedPtoresulting in
We nd at most two possible edge proposals per rectanthe augmented pod!, .

gle side. The rst one results from the highest edge overlap

with the connected component boundaries. The second prg:1 4 Optimization

posal is added only if the ratio between its overlap and the

highest edge overlap is abot&'9¢ set to 075 in our experi-  Starting from an incomplete facade con guratiBpand an

ments. The rectangle with the best combination of edge pregugmented pool of elemen® in the facade, our goal now
posals is added tBo, and all other combinations are addedis to nd the optimal facade con guratioﬁ?pt with regard

to the pool of alternative elemerfes. to a certain energy function. We assume that the elements in
F, are xed, so the optimization amounts to the search for
6.1.2 Sub-sampling the optimal subset of elementsiy which, combined with

the entire seE,, minimizes the energy function:
The initial facade con guratioifrg obtained by the approach
described in the previous section can potentially suffer fron]:opt
errors such as missing or misplaced elements, and false pos-
itives. As our proposed architectural principles are not de- .
signed to remove elements, dealing with false positives re- St CoverlarP)

quire separate consideration. The Coveriap CONstraints disallow any pair of overlapping el-
Our approach to dealing with incorrect facade elementgments irP to be selected at the same time, and can be ex-
is to repeatedly sub-sample the starting facade con guratioﬁressed as a set of linear inequalities of the féon 1.
with the goal of achieving at least one con guration contain- Selecting a subset of elements can be viewed as a binary
ing only correct elements. Furthermore, we do not discarghteger optimization problem, where each variable indicates
the elements that are not sampled, rather, we move them {ghether the corresponding element is included in the sub-
the pool of alternative elements for later consideration. set. In general, binary integer programming is NP-complete
The sub-sampling is repeatedinrounds. Ineachround (Karp 1973. There are of course certain subsets of energy
we randomly splifo into two disjoint subsets: the elements fynctions for which this optimization can be performed ef -
from the rst subset are kept as the facade con guration Ofcienﬂyl For exampleKolmogorov and Zabil{2004 shows
ther-th rOUndFr, while the other elements are added to thEthat if the energy function can be written as a sum of func-
pool Po, constructing the podP;. The split is performed  tjons of up to two binary variables at a time (unary and reg-
element-wise by adding an elementRp with probability  yjar pairwise potentials), the optimization can be performed
p'e™, or toF; with probability 1 p™ We setp™"= 0:4,  jn polynomial time. However, we allow the energy function
which allows us to keep on average more than half of thgy depend on an arbitrarily complex set of weak architec-
initial elements while at the same allowing to remove dif-trg] principles, see Sectio.2.2 For this reason, and to
ferent combinations of potentially incorrect candidates. Inkeep the optimization as general as possible, we assume no
our experiments, the setting of = 20 produced satisfac- prior structure of the energy function. This rules out the
tory results. Further increase in the number of rounds typiyse of deterministic optimization approaches, such as cut-
cally does not resultin nding a better con guration. When ting plane methods (where the objective function need not
reducing the number of rounds, the performance degradese convex), branch-and-bound (no knowledge on lower and

=F, [ argminE®"YP[ F,)
P P, (25)

gracefully, ConVerging to the initial |abe|ing de ned Fw upper bounds), or dynamic programming (no Opt|ma| Sub-
structure property).
6.1.3 Element proposing Therefore, our choice is limited to (meta)heuristic meth-

ods. The simplest approaches, e.g. hill climbing or coor-

Assuming that the con guratiof, contains only true pos- dinate descent, are prone to getting stuck in local minima
itives (which should hold true for at least one roundwe  (Russell et al. 1996 Monte Carlo methods such as simu-
have a strong cue for discovering facade elements which atated annealingKirkpatrick et al. 1983 or MCMC (Gilks
not present in eithef, or P;. For example, we might search et al. 1995 are more powerful, but typically require a large
for elements similar to those in the current facade con gu-number of objective function evaluations. Genetic algorithms
ration. (Holland 1975 are another popular metaheuristic, which was

At this point, we can plug in any weak architectural prin- adapted for ef cient solving of integer optimization prob-
ciple which has the property of proposing new facade ellems byDeep et al(2009. Although there is no proof of
ements. Depending on the con guratién, different addi- convergence, the latter implementation was shown to com-
tional facade elements might be proposed in each round (sgare favorably to random search or annealing-based algo-
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rithms on certain datasets. We use an existing implemen-
tation of this approach in MATLAB's Global Optimization
Toolbox (Mathworks 2014, with default parameters, to solve
the minimization problem in E5.

6.1.5 Post-processing

After n" rounds of sampling and optimization, the facade

con guration with the lowest energlf°? is selected as the

best one. Note that the bounding boxes of facade elements

boxes are xed during optimization. Therefore, we employ

post-processing principles on the best con guration, to clean

up the nal result by adjusting facade element boundaries.
Fig. 11 Similarity principle: Left: windows marked with red rectangles
are the initially discovered windows. Right: the similarity voting space

6.2 Weak architectural principles contains strong peaks at previously undetected windows.

The weak architectural principles introduce meta-knowledge

about facades into the labeling process. All principles take a As shown in Table2, we identify three different prin-
con guration of existing facade elements as input, and cariples for the proposal of new facade elements, namely the
be divided into three main categories based on their outpusimilarity, symmetrnanddoor hypothesisEach of these prin-
The rst category contains principles which propose new fa-ciples proposes a separate set of facade elements, which we
cade elements. These are used for generating new objectgnoteWs™, WY andWd°°, respectively. Other princi-
which have not yet been discovered in the rst two layers ofples can be added if necessary. We denote Witthe set of

our pipeline. Second, some principles can be used to gragal facade element proposals generated by the principles, i.e.
proposal facade con gurations, producing a single numbeW = fWS™[ WSYM[ wdo0'g, The similarity principle is

the 'energy' of the con guration as output. For example, thebased on the observation that most facades contain visually
alignment principle should produce low energy for con g- similar objects. If some elements are missing in the current
urations with well-aligned elements. Third, some principlesfacade con guration, they can still be found through visual
are used as a simple post-processing step, modifying existimilarity to the existing elements, see Figdre This prin-

ing elements in the facade con guration. Tallshows an ciple is applied separately per object class and is parameter-
overview of our proposed principles, sorted into the thredzed by the median widtb™e and height/™%of the object
main categories. The last two columns denote whether theategory. Our implementation is similar to thatM#thias
principle was used while analysing a certain dataset. In thet al.(20113. Every object in the facade votes for similar el-
following sections, we describe in detail the aforementionegments using an ISM-like voting schentes{pe et al. 20056

categories of principles. As features we use self similarity descripto&héchtman
and Irani 2007 calculated at Harris corner points.
6.2.1 Element-proposing principles Let us consider a set of feature points that fall within the

bounding box of a single element in the facade con gura-
Based on a given facade con guratibp element-proposing tion. Each of these feature points is de ned by its descriptor,
principles suggest new facade elements by exploiting meta vote vector to the center of the bounding box, and the size
knowledge about (style-speci c) facade structure. of the bounding box of the element. For each feature point,

Table 2Weak architectural principles used to complement the segmentation results of the rst two layers. A tick in the "Propose” column denotes
that the principle is used to propose new facade elements. Some principles can be used to evaluate the tness of the facade con guration, denoted
with a tick in the “Grade” column. The “Post-process” principles can be used in the last step of the inference procedure to modify the existing
facade elements. Last two columns indicate which principles are used for each of the datasets.

(@)

Principle

|| Propose | Grade | Post-proces§| ECP | eTRIMS
(Non-)alignment: vertical and horizontal - X X

X

Similarity of different windows of the samefacade
Facade symmetry

Co-occurrence of elements

Door hypothesis: rst oor, touching ground

Vertical region order: {shop , facade*, roof , sky }

X
X

X XX
XX X X X X

XX,
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we search for 10 nearest neighbors among all feature points
in the image based on its descriptor. The neighbors then cast
votes into a global voting space using a Gaussian kernel of
size mir(u™e v The process is repeated for all facade
elements in the con guration. After all votes are collected,
we perform greedy non-maximum suppression: each maxi-
mum de nes an area of si2é"® v™din which we keep

the maximum and set the other values of the voting space in
that area to 0. Most of the maxima in the voting space will
be situated inside the bounding boxes of existing elements.
Each remaining maximum de nes a bounding box with the
size de ned as the median of bounding boxes sizes corre-
sponding to votes which contribute to the maximum.

As the similarity voting is performed based on the sub-
setF; (Section6.1.1), some maxima will correspond to fa-
cade elements already . Only new elements build the
setWsM We limit the number of new proposals jj, as Fig. 12 The (non-)alignment principle states that facade elements

. ould be either aligned or clearly off-center. In this image, windows
we do not wish to add more proposals than the number Ojl;hibit a high degree of horizontal and vertical alignment. Two win-

elements currently in the con guration. dows bordered with yellow lines are vertically off-center to other win-
. . . dows. This should not be penalized, as this is a often-observed window
Harris corners are also used as a simple measure in thgn guration. The blue dashed line depicts the symmetry axis of the

principle of verticalsymmetry. The interest points are mir- facade.
rored about a symmetry axis (line) hypothesis. A match is

de ned by two interest point locations, which are mirrors
of each other about the symmetry axis. Note that we onl

match interest point locations at this point, not their descrip- . . . .
tors. Element-grading principles contribute to the energy function

Econfig which is used to judge a proposal facade con gura-
The maximum number of matches divided by the pointdion F. We de ne this energy function as
under consideration de nes a simple symmetry score for

)5.2.2 Element-grading principles

the corresponding symmetry axis. If symmetry is detected " fi9(F;y-2) = Edaq(F;yt2) + a aPEP(F;y-?)
(symmetry score t SY™), facade elements are mirrored about p2weakPrinciples
the similarity line with the maximum score and constitute (26)

the set of proposalg/sY™ For the value ot Y™ we select

the lowest symmetry score from all symmetric facade exwherey"? represents the middle layer output (CRF label-
amples in the training and validation sets. Figligesshows ~ ing). The data ternE%@encourages the con guration to be
an examp|e of a Symmetric facade, with the symmetry axigs similar as possible tothe prediction from the middle Iayer.

denoted as a dashed blue line. It is independent from any principle and de ned by:
Thedoor hypothesisprinciple creates a single door pro- E933(F;y-2) = §  Ef(F;yL2) (27)
posalwd°% and it is only applied wheR" does not already 12Y opj

contain a door bounding box. If there are no door objects in
the pool of alternative elements either, we fall back to the

probabilistic output of the bottom layer. We expect a door td&(Fiy*?) = éLZ[Yi =17 gy R = 1)= 5L29(yi? Fl) (28
be at least the size of a median window in the facade. There- n2y . _y‘zoy o
fore, we rst search for the maximum response by sliding a * y_gu[y‘ =17 gk 8 1]‘ygL2[yi =1 (29

window of sizeu™d v™ed (median window size) over the
bottom layer probabilistic output and averaging pixel prob-  whereYq,j2 Y denotes the subset of all object labels, as
abilities corresponding to theéoor class inside that bound- only facade objects are optimized in this step. Note that we
ing box. From the position with the maximum support, wede ne the data term separately for each object l&l2eY op;.
greedily grow the door bounding box until the average probThe functiong(y;;F;1) returns 1 whery; is covered by a
ability of the door class starts decreasing. Even if the realbounding box with the same lablefrom F. Expressior28
image contains several doors, this principle is limited to proteduces the energy when labeled piyeils covered with a
duce only one element, the one with higher support. facade element with the same label from con guratign
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while expressior29 penalizes object pixels not covered by
facade elements frof;.

The energy of each grading principle is weightedady
and added to the total energy. We determine the values for
aP on the validation set. In the following, we will describe
the principles that contribute to the energy function.

The (non-)alignment principle is based on the obser-
vation that many facade elements of the same type are either
exactly aligned or clearly off-center (see the yellow lines in
Figure12). The energy for an object class is de ned as

Ealign(F) - é b (Sg_el) Sg_eZ) it W) + b (S(Zel) S(Zez) 2 W) + (30)
(erie2)

bE® 2" + pl® {;th (31)

Fig. 13 The vertical region order principle determines the border be-
tween the sky, roof, wall and shop areas of the facade.

( t2 23, i
b(zt)= tﬁz_(l L= A
6 ifjg > 1 direction, seeking to maximize the overlap between the split

wheree, ande; refer to each possible combination of same-line and region boundary pixels. After the splitting positions
class elements i, and(s;t;) and(sp;ty) represent the co- between the regions are found, we switch the labels of the
ordinates of the top-left and bottom-right corners of an ele@forementioned classes to be consistent with the region or-
ment. The capped in uence functidnrates the top, bottom, der.
left and right alignment of a pair of facade elements. The The (non-Jalignment principle is also used in the post-
function has a constant value as soon as the distance betweRCessing step. We use the second part of the energy func-
element boundaries exceeds a certain threshdhsed on  tion E'9" (31) to align windows horizontally by adjust-
our initial observation that windows are either aligned orind the upper and lower borders of their bounding boxes.
completely misaligned, we set andt " to half of the me- We nd the local minimum of this energy with the iterative
dian object width and height respectively. BFGS Quasi-Newton methodrigtcher 198Y. The result is

The principle ofco-occurring elementse ects the ob- that all windows aligned horizontally within a tolerance of
servation that pairs of elements appear in certain xed cont " Will now be perfectly aligned with each other.
gurations. One particular case of this principle is window
and balcony co-occurrence: a facade should not have a ba}—Results
cony without a corresponding window. Therefore, we rst

”Y to assign at least one V\(indow to each balcqny. Balconigwe compare our approach to previous work on two datasets
without a corresponding window are then penalized by addigg ¢ .- je parsing. Tabl&@and5 show the performance of

occ i CC
a constant value®*“to the energy term. By setting®> 0 5 an5r0aches evaluated per class, as well as the average
We Increase th_e energy of solutions cor_1ta|_n|ng ON€ OF MOThjy | and class accuracies. We show the results of our sys-
solitary balconies. The co-occurence principle might as wel em for each layer of the pipeline together with the top layer
be used for cher pairs of elements or even as a facade elﬁérformance of our previous worklartinovic et al. 2012
ment proposing principle, but we leave this for future Work'and the performance of other approaches. Example output

of our system can be found in Figuré$and15.

(32)

6.2.3 Post-processing principles

The vertical region order principle states the specic or- 7.1 ECP Database

der of thesky, roof, wall andshopareas observed for Hauss-

mannian facades. We enforce such an order in our outpu#tll methods were evaluated following the same 5-fold cross
labeling (See Figuré&3). First, we nd the initial split lines validation, evaluated on the updated annotations as described
between the aforementioned areas. This is done by ndingn Martinovic et al.(2012. In Table3, we compare our re-

the connected components of the corresponding labels arsdilts with the Random Forest (RF) pixel classi eridboul
placing a split line on the lower boundaries of the regionset al. (2010, the Reinforcement Learning (RL) grammar-
Then, similar to Sectio®.1.1, we test candidate split posi- based approach frofireboul et al(2013), the domain knowl-
tions by moving the split lines pixel by pixel in the upward edge learning (DKL) work oDai et al.(2012), and the re-



20 Markus Mathias et al.

Table 3 Performance on the ECP dataset (in percent). All experiments were performed with the same protocol (5-split cross-validation with 60
training, 20 validation and 20 testing images).

Window Wall Balcony Door Roof Sky Shop Pixelavg Class avg

RF (Teboul et al. 201p 33 67 32 82 52 92 20 53.46 53.73
RL (Teboul et al. 2018 55 82 49 43 52 97 82 73.24 65.66
DKL (Dai et al. 2013 72 87 70 66 80 93 91 83.50 79.80
SPT (Tylecek and Sara 20)3 75 86 73 66 85 95 95 84.20 82.14
3Layer Martinovic et al. 2012 75 88 70 67 74 97 93 84.17 80.71
Bottom layer 64 91 75 41 82 94 91 84.75 76.67
ATLAS (ours) | Middle layer 76 90 81 58 87 94 97  88.07 83.36
Top layer 78 89 87 71 79 96 95 88.02  85.22

Table 4 Comparison of our approach to the Reinforcement Learning (RL) approadlelod(l et al. 201Bwith different merit functions, on the
ECP dataset. RF: Random Forest; BL, ML, TL: Our bottom, middle and top layer output, respectively.

Pixelavg Class avg Pixelavg Class avg
BL 84.75 76.67 RF merit 73.24 65.66
ATLAS (ours) | ML 88.07 83.36 RL (Teboul et al. 2018 | BL merit 82.41 72.58
TL 88.02 85.22 ML merit 83.10 76.17

cent Spatial Pattern Templates (SPT) workTyyecek and method achieves lower performance than the merit function
Sara(2013. We retrained and evaluated the RF and RL clasitself. This supports our claim that adding strong grammar
si ers using the publicly available code, while DKL and constraints can actually decrease the overall performance.
SPT results were provided by the respective authors. Comparable results to our bottom layer were achieved
As expected, the simplest approach - Random Foredty Dai et al.(2012), an approach which, like ours, forgoes
classi er based directly onimage patch@&slfoul etal. 201p the usage of style-speci c grammars. Instead, it is designed
- exhibits the poorest performance. This can be partly atto adapt to various building styles by learning weights for
tributed to weak features (raw pixel values), and partly todifferent architectural principles. However, as the approach
the lack of context, since every pixel is classi ed based onlywas tested on only one building style (ECP dataset), it is dif-
on its local patch of size 333. Compared to this approach, cult to assess the effectiveness of the learning algorithm.
our bottom layer already achieves a better performance fdrurthermore, their initial image segmentation into rectangu-
all classes, due to the fact that we use a superpixel-baséal regions is xed and might pose a problem when dealing
approach and more discriminant extracted features. with more general facades containing irregular appearance
The state-of-the-art grammar-based RL appro@ehgul ~ (€.9. eTrims dataset). Our top layer utilizes a more exible
et al. 2013 requires a prior de nition of a speci ¢ Hauss- Setof principles, which are not restricted to follow the initial
mannian-style procedural grammar. The free parameters §egmentation. For example, we allow classes sucaasr
the grammar are then optimized such that the agreement béegetatiorto keep their irregular boundaries.
tween the resulting labeling and the bottom-up merit func-  Another region-based method, SPTylecek and Sara
tion (RF labeling) is maximized. This approach greatly im-2013 achieves comparable results to our bottom layer, even
proves upon the results of the earlier RF approach, yet stiftutperforming it in class accuracy. This demonstrates that
performs worse than any layer output of our approach. Ongdding a region-based CRF with higher-order potentials on
of the reasons for this behaviour is that the somewhat ovetop of the initial segment classi cation boosts performance.
simpli ed grammar restricts the space of possible facade laWe expect that our approach would bene t by integrating
belings, imposing certain structure even if it is not presenthe SPT method in the rst layer, which we leave for future
in the image. For example, vertically misaligned roof win-work.
dows are not supported with the existing grammar, and are When considering the added value of each layer in our
thus mislabeled. Our approach does not suffer from these ispproach, it is clear that the middle layer produces the biggest
sues. One may argue that the lower performance of the Rimprovement in pixel accuracy for th&indow and door
method stems from their usage of less informative bottomelasses, as was expected for the usage of object detectors.
up cues. Therefore, we investigate how the RL approach peAdditionally, the accuracy of other classes goes up due to the
forms when using much stronger merit functions, namelyusage of learned label maps (Sect®d) and the smooth-
the output of our bottom and middle layers. The results iring property of the CRF (Sectidn5). By introducing high-
Table 4 (right) show that the RL method indeed bene ts level knowledge through the top layer, we further improve
from stronger bottom-up information. However, when usingon most of the classes. The noticeable drop inrtleé and
our bottom and middle layer as the merit function, the RLskyclass can be explained by the fact that the “region order”
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Table 5Performance on the eTRIMS dataset. Class accuracies are shown in percent. The per-class reBuitslfcbrat al (2012 were obtained
on only one cross-validation fold, thus we do not report them.

Building Car Door Pavement Road Sky Vegetation WindowPixelavg Classavg

CRF (Yang and Forstner 201)b 71 35 16 22 35 78 66 75 65.80 49.75
HCRF (Yang and Forstner 201)a 67 36 14 85 53 80 78 80 69.00 61.63
ICFHGS- Frohlich et al. 201 - - - - - - - - 77.22 72.23
SPT (Tylecek and Séara 2013 89 70 37 64 68 81 84 68 82.10 70.13
3Layer Martinovic et al. 2012 86 67 18 35 a7 91 81 80 80.81 63.20

Bottom layer 91 61 26 29 51 94 82 66 80.42 62.52
ATLAS (ours) | Middle layer 91 74 50 15 73 97 87 73 83.39 70.00

Top layer 89 73 49 15 73 97 87 75 82.90 69.81

principle (Sectior6.2.3 imposes a straight line to separate tTa;bllti_(%ComputtZlg _‘im‘fs for our methﬁd O’t‘hthg‘ iCP datasfta'“_?}ir]'i
. . otal time spent during training for each method. Items marked with '-
regions which does not always match the real, more COM;, the Train’ row denote that the method has no training phase. 'Test":

plex, boundary. We nevertheless kept these strict horizontabmputing times for one test image. Note that label map learning is a
split lines between image regions, as they facilitate the prolearned prior, so it has no computing time during testing.

cess of procedural facade modeling.

C(_)mpfa}red to the top-layer output of our previous work Segmentation Tra'r_' 3.:;;5;
(Martinovic et al. 2012 we improve on almost all classes, | Bottom layer [ Feature extraction 1 315s
boosting the average pixel accuracy to 88%. The increase Classi er 18m | 3.05s
of nearly 4% was achieved through several re nements of Detector 8h| 21s
this work, namely: using SVM as the region classi er, us-| Middie layer é??blfl maps 7(1)2 e
ing stronger detectors, learning label priors, learning CRF 55 Tayer Subsampling and optimizatioh T 180s

parameters, and using the new top-layer sampling approach.

they were re-labeled as windows when de ning rectangu-
lar window regions. Furthermore, many of the buildings in
eTRIMS contain window shutters, which are annotated with
the building class in the ground truth. Our generic detector,
gn the other hand, is trained on data which includes the shut-

7.2 eTRIMS Database

As can be seen in Tabte we outperform all previous results
reported on the eTRIMS dataset in terms of overall pixel ac
curacy. It is important to note that even though the method . _ ) )
of Frohlich et al.(2012; Tylecek and $arg2013 achieve tgrs in the wmdow_structure, thgre_fore increasing the confu-
higher class average, their pixel accuracy is still lower thary'O" bet"",ee” thevindow andbuilding clasg. Eyen though
ours. This can be explained with the poor performance of th[%he nal pixel accuracy of -the top layer is shghtly Iowe.r
pavementlass in our approach, especially after the smooth_Ehan the accuracy of the middle layer, the resulltlngllabehng
ing effect of our CRF, which increases the confusion with!S more visually pIeas_lng, as can b_e ot.),served in Figdre
the bordering segments (mainigad). One of the reasons Compareq tq our previous V\{OfM@fIIﬂOVIC etal. 2013, we
for this behaviour of the CRF is that its parameters are learnBQtice @ signi cantincrease in the performance of almost all
on a relatively small validation set (10 images), reducing th&lasses.
effect of unary potentials.

The difference between our bottom and middle layer is
most apparent for the&indow car, anddoor classes. These
are the very classes for which we had trained object de-
tectors. Additionally, theoad class performance is signif- 7-3 Computing times
icantly boosted due to the smoothing effect of the CRF (un-
fortunately, at the cost of the aforementiomedyementlass). We performed all of our experiments on an Intel Core i7
Finally, in the top layer, we only improve the performance870 CPU with 8 cores. Tablg shows the average comput-
of the window class, which is not surprising, as this is theing times on the ECP dataset, differentiated with respect to
only class in this dataset for which we use weak architecturahe different layers. Please note that the training phase dif-
principles. We also observe a 3% performance drop for théers for each method. As said in Sectibrthe SVM classi-
door andbuilding classes. By analyzing the output data, we er training is performed on the training set, while detector
can see that the door accuracy drops due to the rectanguldabel maps (Sections.3 and5.4) and the CRF parameters
ization process (see Secti6ril.]). Since some doors were are learned on the validation set. The training protocol for
partially covered bywindowdetections in the middle layer, detectors is described in Sectibri.
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. building D car . door D pavement . road D sky D vegetation . window

Fig. 14 Results on the eTRIMS dataset. (Left) The original image. (Middle-left/center/right) Outputs from the bottom, middle and top layers,
respectively. (Right) Ground truth.

7.4 Application: Image-based Procedural Modeling. correctly ( rst row), while it is not forced to hallucinate non-
existing ones (second row).

We use the output of the top layer in a straightforward pro-

cedural modeling scenario, encoding the facade as a set of

CityEngine CGA rulesKsri 2013. The 7 different classes 8 Conclusion and future work

from the ECP dataset correspond to the terminal symbols

of the procedural grammar. However, we make a distinctioWe proposed a new method for facade parsing which is di-
between facade element classemfiow balcony door)and  vided into three layers. For the bottom layer we explored
region classesaall, roof, sky shop. Each element class is a variety of different segmentation and classi er combina-

modeled in a separate layer and then overlayed on the vertions to get our initial bottom up facade labeling. In the
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. window D wall . balcony D door . roof D sky D shop

Fig. 15Results on the ECP dataset. (Left) The original image. (Middle-left/center/right) Outputs from the bottom, middle and top layers, respec-
tively. (Right) Ground truth.
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middle layer we then introduced the usage of object detec-
tors to improve over the initial labeling. The results from
the bottom and the object detector responses are combined
in a principled way by using a CRF formulation, where the
weights of the different CRF terms are estimated automat-
ically. Finally in the top layer we added facade speci c in-
formation viaweak architectural principlesVe proposed a
general framework in which principles can be removed or
added. This facilitates the usage of this layer for other fa-
cade styles. The output of our top layer are architecturally
plausible facade structures with clearly de ned boundaries
and structures. Our method was evaluated on two datasets
and shows state of the art performance.

In a nal step, we demonstrated how the output of our
top layer can directly be used for the image-based proce-
dural modeling of facades. Instead of building our system
upon a previously de ned grammar — as demonstrated in the
previous chapter — we could actually infer procedural rules
from the output of our system. These rules are instance spe-
ci c and if extracted from a single building can in that case
only be used to generate a model of that building. In a re-
cently published work it is shown that a probabilistic Hauss-
mann grammar can be learned automatically by using the
ground truth image annotations of multiple buildings of the
ECP datasetMartinovic and Van Gool 2013 Given this
result, as a future work, we plan to combine the grammar
learning with our approach. This means that the grammar
has to be learned from noisy input data in contrast to learn-
ing it from ground truth annotations. The complete pipeline
would bypass the tedious task of generating procedural fa-
cade grammars manually for many different facade styles
and result in procedural grammars from which buildings of
a certain style can be sampled.
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