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Abstract We propose a novel approach for semantic seg-
mentation of building facades. Our system consists of three
distinct layers, representing different levels of abstraction in
facade images: segments, objects and architectural elements.
In the �rst layer, the facade is segmented into regions, each
of which is assigned a probability distribution over seman-
tic classes. We evaluate different state-of-the-art segmenta-
tion and classi�cation strategies to obtain the initial prob-
abilistic semantic labeling. In the second layer, we investi-
gate the performance of different object detectors and show
the bene�t of using such detectors to improve our initial la-
beling. The generic approaches of the �rst two layers are
then specialized for the task of facade labeling in the third
layer. There, we incorporate additional meta-knowledge in
the form of weak architectural principles, which enforces
architectural plausibility and consistency on the �nal recon-
struction. Rigorous tests performed on two existing datasets
of building facades demonstrate that we outperform the cur-
rent state of the art, even when using outputs from lower
layers of the pipeline. Finally, we demonstrate how the out-
put of the highest layer can be used to create a procedural
building reconstruction.
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Fig. 1 The input to our system is cropped and recti�ed facade image
(left). We process the image by our three layers to produced a labeled
output image (middle). From this output we produce a textured proce-
dural model (right).

1 Introduction

The accurate reconstruction of building facades plays an im-
portant role in 3D city modeling. Current models built by
simple plane �tting and texturing are a good starting point,
but provide inadequate 3D visual perception. For instance,
artifacts in the 3D shape often show up during unrestricted
user movement around the model. Due to diversity of ap-
pearance, hierarchical structure of scene objects and the lack
of implementing long-range interactions, it appears impossi-
ble that improved, bottom-up depth extraction and primitive
�tting alone can avoid such artifacts from sneaking in. Fur-
thermore, conventional bottom-up models based on struc-
ture from motion lack any semantic knowledge about the
scene. Yet, adding a good understanding of what needs to be
modeled is a strong cue, not only to improve the visual and
3D quality of the model, but also to substantially widen its
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usage (e.g. for animation where people should walk through
doors, not walls, when wanting to know the average number
of �oors that the buildings in a street have, etc.). Figure1
shows an example of our modeling pipeline, that builds on
the inclusion of semantic aspects.

Conversely,procedural modelingprovides an effective
way to create detailed and realistic 3D building models that
do come with all the semantic labels required. These mod-
els are typically generated by iteratively applying procedu-
ral shape grammar rules on a starting shape, e.g. a building
footprint. Each rule adds more detail to the result of the pre-
vious. The resulting models support the addition of visually
crucial effects such as window being re�ective, balconies to
protrude, etc.

The goal of creating procedural models forexistingbuild-
ings from images or other data thereof, has been coinedin-
verse procedural modeling. An early attempt can be found
in Müller et al. (2007). Such inverse procedural modeling
needs to select the appropriate rules from the style grammar,
as well as their parameter settings. As the corresponding
search space is huge, solutions typically start from a prepro-
cessed version of the raw data. The semantic segmentation
of facades - also referred to as facade parsing - is a good ex-
ample. This said, such accurate labeling of facade elements
(such as windows, doors or balconies) is a dif�cult problem
in its own right, given the great diversity of buildings and the
interference of factors like shadows, occlusions and re�ec-
tions in the images. It is this facade parsing that this paper
focuses on. Furthermore, a shape grammar speci�c to the
desired style is not easy to come by. An expert in that style
needs to sit down with a person versed in the creation of
the grammars. Therefore, our approach also avoids the need
for such a style-speci�c grammar and uses generic archi-
tectural principles instead. This stands in contrast to most
earlier inverse procedural modeling work (see e.g.Teboul
et al.(2013)). Assuming that the input facades are of a cer-
tain architectural style helps to keep the dimensionality of
the search space a bit smaller. In the case ofTeboul et al.
(2013), this is e.g. the Haussmannian style, ubiquitous in
central Paris. Strong prior knowledge about this style is im-
bued in the Haussmann-speci�c procedural facade grammar.

This paper extends our previous work (Martinović et al.
2012), which achieves top results on the task of facade pars-
ing, even without using any style-speci�c prior knowledge.
Still, if style information is available, it can be incorporated
into the system through the usage of extra “architectural
principles”. In contrast to full procedural grammars, these
principles do not encode the entire facade structure and can
be formulated explicitly by laymen. Moreover, we demon-
strate how procedural rules and thus simple shape grammars
can be derived from facade labeling, rather than vice-versa.
By avoiding the need for a style prior, we circumvent the
manual construction of style-speci�c grammars.

Our approach to facade parsing is performed in three
layers, representing different levels of abstraction in facade
images: segments, objects and architectural elements. An
overview is given in Figure2.

Bottom layer.Initially, the facade is segmented into super-
pixels, i.e. image regions. Visual features are extracted from
the corresponding regions, and subsequently used for clas-
si�cation. Each region is assigned a probability distribution
over semantic classes. In this layer, we pay particular atten-
tion to the evaluation of different segmentation algorithms
and classi�ers on the task of semantic segmentation of fa-
cades, as well as the effect of segmentation coarseness on
the classi�cation performance.

Middle layer.The second layer of our approach introduces
detectors for objects found in urban scenes, such as windows
and doors. The classi�er output from the bottom layer is
combined with the object detector responses (see Figure2)
and results in our improved middle layer output. The combi-
nation of detections and the labeling from the bottom layer is
achieved through a 2D conditional random �eld de�ned over
the image, which can be ef�ciently solved with graph cuts.
We investigate the performance of different object detectors
and show the bene�t of using such detectors to improve our
initial labeling.

Top layer.The generic approaches in the �rst two layers are
complemented with considerations dedicated to the task of
facade labeling. In the top layer, we incorporate additional
meta-knowledge in the form ofweak architectural princi-
ples. In contrast to shape grammar rules, these principles
are easily observable in the images. For instance, the prin-
ciple of vertical window alignment is often an implicit con-
sequence of grammar rules, never made explicit in any of
them. Also, we use these architectural concepts as guide-
lines, not as hard constraints. Therefore, we are also able
to model irregular facades, as demonstrated on the eTRIMS
dataset that contains different facade styles. The architec-
tural principles are designed such that each principle either
proposes new facade elements, re-arranges their position, or
evaluates the current con�guration of elements. Finally, we
pose the search for the optimal facade labeling as a sampling-
based approach. Although the overall pixel accuracy of the
semantic segmentation is not greatly in�uenced by the top
layer, we obtain image labelings that are visually more pleas-
ing, with clearly de�ned object boundaries and structures.
These in turn form a stronger basis for further processing,
e.g. for deriving style-speci�c procedural grammars.

While the overall structure of our system is similar to
that of Martinović et al. (2012), each layer has been up-
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Fig. 2 The proposed three-layered approach to facade parsing.

graded. In the bottom layer, instead of using a �xed combi-
nation of Mean-shift (Comaniciu and Meer 2002) segmen-
tation and the Recursive Neural Network classi�er (Socher
et al. 2011), we evaluate various segmentation and classi-
�cation algorithms. In the middle layer, we learn a prior
on element locations and calculate the probabilistic detec-
tor output in a more robust way. Furthermore, we learn the
CRF parameters with structured SVMs (Tsochantaridis et al.
2005). In the top layer, we propose a coupled subsampling-
and-optimization technique in a generic framework that al-
lows for addition of new principles.

Our main contributions are as follows:

(1) a new approach for facade parsing, combining low-
level information from the semantic segmentation, middle-
level detector information about objects in the facade, as
well as top-level architectural knowledge; (2) a rigorous eval-
uation on two different datasets which shows that we outper-
form the state-of-the-art in facade parsing; (3) the concept
of weak architectural principles, which introduce the high-
level knowledge needed for ensuring architectural plausibil-
ity.

2 Related Work

This section concisely describes the relation between the
proposed work and prior art. We have organized this overview
into several main topics.

Scene parsing.There exists a signi�cant body of work in
this �eld. Some approaches attempt to estimate labels for
each pixel in the image (Shotton et al. 2009; Fröhlich et al.
2013). Others depend on an initial segmentation of the im-
age into super-pixels. Visual features are extracted from the
corresponding patches or regions, and subsequently used for
classi�cation. In our work, we opt for the region-based ap-
proach in the �rst layer, as state-of-the-art results in seman-
tic scene segmentation are achieved by similar approaches.

These approaches ensure labeling consistency by incor-
porating region context in various ways: estimating geomet-
ric labels (Gould et al. 2009a; Tighe and Lazebnik 2013b),
using multiple over-segmentations (Kumar and Koller 2010),
learning segmentation trees (Socher et al. 2011) or label
transfer combined with a simple MRF (Liu et al. 2011; Tighe
and Lazebnik 2013b). However, facade structures are dif�-
cult to analyse with solely region-based approaches, as the
initial segmentation boundaries might not correspond to ac-
tual object boundaries in the image. Our work puts more
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emphasis on the combination of the region-based approach
with higher-level information, such as object detectors and
architectural knowledge.

Combining semantic segmentation with object detectors.
The effect of positive reinforcement between semantic seg-
mentation and object detection approaches has been demon-
strated in several works.Heitz and Koller(2008) use image
regions as context for improved object detection. This is an
orthogonal approach to our work, as we use object detectors
to improve the facade labeling. Joint reasoning about pixel-
wise labeling and object detectors in a CRF framework was
performed inWojek and Schiele(2008), while also captur-
ing temporal consistency for video sequences. However, the
complexity of their CRF requires slow approximate infer-
ence with loopy belief propagation. The work ofLadicky
et al. (2010), later extended byFloros et al.(2011), disre-
gards the temporal consistency, but in their CRF framework
inference can be performed ef�ciently via graph cuts. The
second layer of our approach is similar toLadicky et al.
(2010), but with two key differences. Firstly, instead of us-
ing detector outputs as higher-order potentials, we decom-
pose them into unary potentials, which are learned based
on detector output on the training set. This enables us to
solve a much simpler CRF optimization problem. Note that
the problem of inferring pixel-level cues (or masks) from
bounding boxes can also be tackled by using per-exemplar
detectors as in (Tighe and Lazebnik 2013a) if the objects ex-
hibit high variability in appearance. The second advantage
of our approach is that we can ef�ciently learn the CRF pa-
rameters on the validation set based on the structured SVM
approach ofTsochantaridis et al.(2005). As shown in (Szum-
mer et al. 2008), CRF parameter learning using graph cuts is
tractable, fast, and much more ef�cient than methods based
on cross-validation, especially for larger parameter vectors.

Urban reconstruction.For an extensive overview of the �eld,
we refer the reader to the survey ofMusialski et al.(2012).
Our main focus is the semantic segmentation of isolated and
recti�ed facades. These can be obtained from more gen-
eral street-side imagery by approaches such asZhao et al.
(2010); Wendel et al.(2010); Recky et al.(2011); Math-
ias et al.(2011b). Furthermore, we demonstrate that even in
cluttered scenes with occlusions such as vegetation or cars,
our approach can semantically segment the facades.

Xiao et al.(2008; 2009) target realistic visualization with
a low level of semantic encoding in the reconstruction. In
their work, facades are represented with planes or simple
developable surfaces. On the other hand, many approaches
employ higher-order knowledge for building reconstruction.
Probabilistic approaches to building reconstruction started
with the work ofDick et al.(2004), where a building is as-
sumed to be a 'lego' set of parameterized primitives. The in-
ference is performed using a Reversible Jump Markov Chain

Monte Carlo (rjMCMC) approach. However, an expert is
needed to set the model parameters and prior probabilities.
In contrast, the free parameters of our system are learned
from validation data.

Certain approaches are based on priors on the facade lay-
out. A grid-based layout is a common assumption (Korah
and Rasmussen 2008; Shen et al. 2011; Yang et al. 2012;
Han et al. 2012). The work ofMüller et al. (2007) also as-
sumes a certain degree of facade regularity, and �ts procedu-
ral grammar rules to the detected subdivision of the facade.
Unlike the aforementioned methods, our approach poses no
grid constraints on the facade.

Grammar-based approaches are quite popular in the �eld
(Alegre and Dellaert 2004; Ripperda and Brenner 2006; Han
and Zhu 2009). They allow the generation of very clean
models and labeling results, often demonstrated by approaches
where facade reconstruction is postulated as a problem of
�nding the correct parameters of a pre-speci�ed shape gram-
mar (Teboul et al. 2010; 2013). Depth cues have also been
used in the context of grammar-based parsing bySimon et al.
(2012), transforming the problem into a multiobjective opti-
mization, solved with a genetic algorithm. In our work, we
advocate the usage of weak architectural principles, a more
�exible approach than using prede�ned grammars.

Object detection has also been considered in grammar-
based approaches. InMathias et al.(2011a), 3D reconstruc-
tions of Greek Doric temples are created using a special-
ized procedural grammar, 3D Structure-from-Motion (SfM)
point clouds, and object detectors. Several approaches use
detector outputs to augment the bottom-up merit functions
for grammar-based facade parsing.Ok et al. (2012) use a
simple approach where the merit of undetected classes is ze-
roed out in every detection. In a work similar to our �rst two
layers,Riemenschneider et al.(2012) combines a pixel-wise
classi�er with Hough forest detectors using a MRF frame-
work. This labeling is then used to create an irregular grid
which is labeled by using a prede�ned grammar. In contrast
to this work, we utilize much stronger bottom-up classi�ers
and detectors, without restricting the �nal output to a grid.

The bene�t of relying on shape grammars is that they
strongly restrict the search space during parsing. Yet, the
grammar may not be expressive enough to cover the vari-
ance in real world data. Furthermore, an expert is needed
to write the grammars for the relevant styles. Human in-
tervention is also required to pre-select the grammar ap-
propriate for each speci�c building. The latter requirement
can be mitigated by applying style classi�ers (Mathias et al.
2011b) that automatically recognize the building style from
low-level image features. Still, using a style-speci�c gram-
mar would imply that it needs to be available beforehand,
which at least for the moment is a limiting issue. There-
fore, in the earlier version of this work (Martinović et al.
2012), we did not assume the existence of such a prede-
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�ned grammar. Other authors have also recognized the lim-
itation of relying on expert-written procedural grammars,
e.g. (Dai et al. 2012), replacing them with weaker, or learned
priors. In fact, our guiding principle is to derive procedu-
ral grammars based on automatically parsed facades, rather
than vice-versa. Some interactive work in that vein has al-
ready appeared.Aliaga et al.(2007) infer simple grammati-
cal rules from a user-given subdivision of a building.Bokeloh
et al. (2010) presented a framework applied on synthetic
3D data. Very recently, approaches that perform automatic
grammar induction from labeled images have been proposed
(Martinović and Van Gool 2013; Weissenberg et al. 2013;
Wu et al. 2013; Zhang et al. 2013).

In summary, the current state-of-the-art in semantic fa-
cade parsing needs the prior speci�cation of a style-speci�c
grammar. Our aim is to outperform such systems, without
needing such a grammar, allowing our approach to deal with
a wider variety of buildings. Moreover, the order can be re-
versed by letting the image parsing control the grammar in-
ference, rather than using the grammar to control the process
of image parsing. The latter selection can be automated by
using style classi�ers, which, as said, require far less human
interaction than the prior construction of entire grammars.

3 Datasets description

Our approach is evaluated on two datasets, the “Ecole Cen-
trale Paris Facades Database Benchmark 2011” (Teboul 2010)
and the eTRIMS database (Kor�c and Förstner 2009). The
ECP database provides labels for multiple facade elements,
while the eTRIMS dataset also contains non-building classes,
such as vegetation. Since we are primarily interested in the
accurate parsing of building facades, our main focus will be
on the ECP database. We additionally validate our approach
on eTRIMS and show that we outperform previous state-of-
the-art results.

The ECP Databasecontains 104 annotated images of
single recti�ed and cropped facades in the Haussmannian
style. The dataset has 7 different labelsY = { window, wall,
balcony, door, roof, sky, shop}. We use the new and more
precise set of annotations provided byMartinović et al.(2012).
Our evaluations are performed with a 5-fold cross-validation
on this dataset. For each fold, we use 60 images for training,
20 for validation, and 20 for testing.

The eTRIMS Databaseprovides accurate pixel-wise
annotations and contains 60 images. Unlike the ECP dataset,
the images are not recti�ed and the facades uncropped. We
use the automatic recti�cation algorithm ofLiebowitz and
Zisserman(1998) as a preprocessing step. To allow for a fair
comparison to previously reported results, we un-rectify our
output prior to evaluation. The labels of this datasetY =
{building, car, door, pavement, road, sky, vegetation, win-
dow} are quite different compared to the ECP dataset, as

there are several non-building classes. As inYang and Först-
ner (2011b), we evaluate our algorithm by performing a 5-
fold cross-validation with random sub-sampling. However,
instead of using 40 images for training, we use only 30,
leaving 10 images as a validation set. 20 images are used
for evaluation.

4 Bottom Layer: Initial Semantic Segmentation

The purpose of the bottom layer is to provide the initial clas-
si�cation of each pixel into one of the semantic classes. As
a single pixel does not contain enough information for accu-
rate classi�cation, one must consider its context.

In a patch-basedapproach (e.g. the baseline ofTeboul
et al.(2010)) the context of a pixel is an image patch of cer-
tain size, centered on the pixel. Each pixel is then classi�ed
separately, based on the features extracted from the corre-
sponding patch. The downside of this method is that the �-
nal result can be quite noisy, since neighboring pixels can be
assigned to completely different classes.

Another approach is to useregions(super-pixels), i.e. to
segment the image in coherent regions, which ideally share
the same semantic label. Classi�cation is then performed
on the region level, which provides three main advantages
over the patch-based approach. First, since all pixels within
a region share the same class, the result is generally less
noisy. Second, the dimensionality of the problem is signi�-
cantly reduced as the number of regions in the image is typ-
ically two orders of magnitude lower than the number of
pixels. Third, coherent regions can provide a stronger clue
for a classi�er e.g. by their speci�c shape. Yet, any errors
in the segmentation step will propagate to the classi�cation,
since the �nal labeling is restricted to follow the super-pixel
boundaries.

In our work, we opt for a region-based approach, as state-
of-the-art results in semantic scene segmentation have been
achieved by similar approaches (Gould et al. 2009a; Tighe
and Lazebnik 2013a; Kumar and Koller 2010). Our experi-
ments validate this choice, as we show in Section7. The im-
plementation of a region-based classi�cation approach con-
sists of three steps: segmenting the images into regions, ex-
tracting features from the regions, and using a classi�er to
obtain probabilistic estimates of classes, or labels, for each
region. In this section we investigate how different segmen-
tation algorithms and classi�ers affect the speed and quality
of facade labeling.

4.1 Image segmentation

One of the most important choices in region-based segmen-
tation is the number of regions created. We de�ne themax-
imum achievable accuracy (MAA)as the accuracy (pixel-
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average or class-average) obtained by using an oracle classi-
�er, which assigns each region the label of the pixel majority
in the ground truth. Clearly, a pixel-based oracle classi�er
achieves theMAA of 100%, since every pixel is classi�ed
separately. By using region-based segmentation we intro-
duce the constraint that all pixels in a single region share the
same class. On the one hand, a more �ne-grained segmenta-
tion tends to result in a higherMAA.On the other hand, clas-
si�ers tend to perform better on discriminative and therefore
larger regions. Even though coarse-grained segmentation is
better suited for classi�cation purposes, this process intro-
duces errors when semantically different regions merge to-
gether, which reduces theMAA. Intuitively, �nding a good
segmentation of the image is equivalent to discovering the
optimal trade-off between region size and discrimination po-
tential.

Over the years, a large number of image segmentation
algorithms have been developed (Comaniciu and Meer 2002;
Felzenszwalb and Huttenlocher 2004; Achanta et al. 2010;
Arbelaez et al. 2011; Van den Bergh et al. 2012). In this
work, we chose to evaluate three dissimilar algorithms on
the task of facade segmentation. The �rst,Mean-shift(Co-
maniciu and Meer 2002), is a popular algorithm that was
demonstrated to perform well for facade parsing in the pre-
vious version of this paper (Martinović et al. 2012). Sec-
ond, we evaluate one of the fastest segmentation algorithms
to date,SEEDS(Van den Bergh et al. 2012). This method
was shown to have competitive results while running in real-
time. Finally, the third algorithm in our comparison isgPb
by Arbelaez et al.(2011), which sacri�ces running time for
an accurate calculation of the segmentation tree. In order to
perform a fair comparison to the other algorithms, we con-
sider only a single level in the gPb tree.

4.2 Feature extraction

We use the same feature extraction algorithm in all of our ex-
periments. Following the procedure ofGould et al.(2009a),
we extract appearance (color and texture), geometry, and lo-
cation features for each region. This choice was motivated
by the fact that the same features are used in several top-
performing scene segmentation approaches (Gould et al. 2009a;
Kumar and Koller 2010; Socher et al. 2011). Additionally,
the publicly available implementation in form of the Stair
Vision Library (Gould et al. 2009b) enables us to quickly ex-
tract features from pre-segmented facade images. With de-
fault parameters, this results in feature vectors of size 225.

4.3 Classi�ers

Given its feature vector, each region needs to be assigned
to one of the semantic classes described in Section3. We
consider �ve different multinomial classi�ers:

1. LOG: Multiclass logistic regression classi�er (Gould et al.
2009b)

2. CRF: An extension of LOG (Gould et al. 2009b)
3. MLP: Multilayer Perceptron (Demuth et al. 1993)
4. SVM: Multiclass Support Vector Machine (Chang and

Lin 2011)
5. RNN: Recursive Neural Network (Socher et al. 2011)

The classi�er output is a con�dence score for each class.
These scores can be transformed into a probability distribu-
tion using a softmax function.

For the �rst two methods, a boosted one-vs-all classi�er
is learned for each class using Adaboost. Then, the outputs
of the classi�ers are used as features for learning the mul-
ticlass logistic model (LOG) with a linear predictor func-
tion. The CRF model is obtained by adding a pairwise term
between neighboring segments, which has a smoothing ef-
fect. For more details about the implementation, please con-
sult Gould et al.(2009b). The multilayer perceptron we use
is a feed-forward arti�cial neural network with a single in-
put, hidden and output layer. The number of neurons in the
input layer is 225, equal to the number of features. The out-
put layer contains as many neurons as there are semantic
classes. Using a rule-of-thumb that states that the optimal
size of the hidden layer is usually between the size of the
input and the size of the output layers, we set the number
of hidden neurons to 75. As the SVM classi�er we use the
publicly available one-vs-one multiclass SVM with a Gaus-
sian kernel function (Chang and Lin 2011). The parameters
C andg are determined from the validation set. Finally, the
RNN classi�er was shown to perform well for the seman-
tic segmentation of general scenes (Socher et al. 2011) and
building facades (Martinović et al. 2012). In line with (Mar-
tinović et al. 2012), we set the length of vectors in the se-
mantic space to 50.

4.4 Analysis

By setting the average number of regions per image to a
�xed value, we evaluate the interplay between different seg-
mentations and classi�ers. Second, we select the best com-
bination of segmentation algorithms and classi�ers, and in-
vestigate how changing the number of segments affects the
classi�cation accuracy. For completeness, we calculate both
pixel-wise (PW) and class-wise (CW) accuracies. The for-
mer is de�ned simply as the percentage of correctly classi-
�ed pixels. We de�ne the CW accuracy as the unweighted
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Fig. 3 (a) Pixel-wise and (b) class-wise accuracy of different segmentation algorithms and classi�ers on the ECP dataset. The results are calculated
as the mean, and error bars as the standard deviation of results calculated from �ve cross-validation folds.
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Fig. 4 The effect of segmentation coarseness on (a) pixel-wise and (b) class-wise accuracy of the oracle and SVM classi�er on the ECP dataset.

average of all class accuracies (the latter being the % of pix-
els of a class that were correctly classi�ed), which provides
an insight into classi�cation performance on smaller classes.
All of the presented experiments are performed on the ECP
dataset.

4.4.1 Segmentation and classi�cation

Keeping the average number of segments per image equal
for all three segmentation algorithms (� 690 segments), we
evaluate the maximum achievable accuracy, as well as clas-
si�cation accuracy achieved with each of the classi�ers from
Section4.3. The results obtained are shown in Figure3.

Generally, using SEEDS as the segmentation algorithm
results in the lowest classi�cation accuracy. However, the
difference between SEEDS and its competitors is relatively

small (around 1%), and one may opt to use SEEDS when
speed is of the essence (as it may very well be when deal-
ing with complete city modeling). Mean-shift and gPb per-
formed similarly in each of the �ve classi�er scenarios. Since
Mean-shift segmentation is much faster to compute than gPb,
we select it as our preferred segmentation algorithm.

Additionally, the data reveals that our method is quite
robust with respect to the choice of classi�er. As expected,
there is a noticeable difference between the maximum achiev-
able accuracy (MAA) and the results obtained with the �ve
classi�ers. The gap becomes even more apparent when con-
sidering class-wise accuracies. This is due to the unbalanced
datasets, where the number of pixels of each class label varies
signi�cantly. By de�nition, class-wise accuracy disregards
this variation.
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We can see that the CRF model bene�ts from the ad-
dition of pairwise terms, compared to the LOG classi�er.
RNN outperforms the basic MLP model, but the results do
not justify the extremely long training time of RNN (around
24 hours). Unlike other methods, which classify each of the
segments separately, RNN also creates a hierarchical parse
tree of the image by recursively combining neighboring seg-
ments. However, existing RNN-based approaches (Socher
et al. 2011; Martinović et al. 2012) do not exploit any knowl-
edge from the tree during classi�cation. Additionally, we
achieved no improvement by using higher levels of the hi-
erarchy, raising further questions about the usefulness of the
tree. Finally, the SVM classi�er emerges as the winner, as it
achieves better results than its competitors both in terms of
pixel-wise and class-wise accuracy.

One may argue that although the SVM classi�er has the
best performance in the �rst layer, some other classi�er might
provide better bottom-up information to the other layers of
the system. We tested this hypothesis with the CRF and
RNN classi�ers, but obtained no improvement over SVM.

4.4.2 Number of segments

The results in the previous section were obtained by setting
the average number of segments per image to a �xed value.
Now we evaluate the effect of changing the segmentation
coarseness while �xing the best performing segmentation
- classi�cation pair, i.e. Mean-shift and SVM. By chang-
ing the minimum region size parameter in the Mean-shift
implementation, we obtain 7 different levels of coarseness,
ranging from 1906 to 283 segments per image.

The classi�cation results in Figure4 show that the max-
imum achievable accuracy steadily drops as we use coarser
and coarser segmentations. The classi�er performance fol-
lows a different trend, as its performance peaks around an
optimal number of segments. While large segments intro-
duce errors by combining neighboring objects into single re-
gions, �ne segmentations produce small image regions which
are not discriminative enough for the classi�er. However,
this effect is prominent only when dealing with rather ex-
treme numbers of segments, as we obtain similar results
from 500 to 1000 segments per image. Therefore, we se-
lected the middle level of coarseness in Figure4, amounting
to 691 segments per image, on average.

5 Middle Layer: Introducing Objects Through
Detectors

In the middle layer, we enrich our labeling pipeline by local-
izing facade elements directly through the usage of object
detectors. Such detectors search for coherent structures that
can span several of the previously segmented regions, thus

allowing better discrimination. In this section, we demon-
strate how detectors are integrated into our system and argue
that their usage bene�ts the overall labeling quality.

Our bottom layer provides a probability distribution over
labels for each region (segment) in the image. These regions
are determined using �xed segmentation parameters for all
input images. As shown in Figure3, even with the perfect
MAA oracle, we can maximally reach 92% pixel accuracy
and 90% class accuracy. By using object detectors in the
second layer, we not only provide information from a sec-
ond source, but also allow our �nal labeling not to be con-
strained by the initial segmentation boundaries. This is espe-
cially apparent for the case of window detection, where the
initial object boundaries often do not coincide with image
gradients.

From all classes present in the ECP and eTRIMS datasets,
some are best discriminated by their texture and color (sky,
grass, road...). Other classes, such aswindow, doorandcar,
are characterized by their distinctive shapes and sizes, and
can therefore be discovered by classical object detectors.
For these 3 object categories we trained object detectors, ex-
plained in more detail later, with training data coming from
different sources. The total number of windows in the ECP
dataset is large enough to train a detector which isspeci�c
to the Haussmannian style. Training a style-speci�c detector
also bene�ts from the fact that Haussmannian windows and
doors samples do not show much variance in appearance. In
contrast, the eTRIMS dataset does not follow a �xed archi-
tectural style and shows a high variance of object appear-
ances. At the same time, eTRIMS contains fewer samples
per object class (1016 for windows, 85 for doors and 67 for
cars). The higher variation combined with fewer examples
makes training reasonable detector models by using only
eTRIMS data infeasible. Therefore, we used data from an
outside source to train style-agnostic window, door and car
detectors. We call these detector modelsgenericmodels (as
opposed tospeci�c models), as the data used for training
(genericdata) does not follow any speci�c style. As shown
in Table1, the window, door and car samples originate from
various sources, e.g. from a dataset of Belgian facades, or
from a general-purpose car datasets, such as (Leibe et al.
2007).

5.1 Object Detectors

Selecting the appropriate detector is not a simple task, as
object detection is still an area of very active research. In
recent years, many top-performing object detection systems
have been based on the well-known deformable parts mod-
els (DPM) fromFelzenszwalb et al.(2010a). These detectors
show excellent detection quality as demonstrated, for ex-
ample, on the yearly Pascal VOC (Everingham et al. 2010)
challenge. Using multiple components and parts gives these
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Table 1Overview of the data used to train the generic detectors.

Trained on
Evaluated on

positives negatives
windows 3924 from Belgian facade images 8343 from pascalVOC eTRIMS/ECP
doors 447 from Belgian facade images 8343 from pascalVOC eTRIMS
cars (frontal) 516 front- and rear-view car images 4268 from pascalVOC eTRIMS
cars (side) 344 from (Leibe et al. 2007) 4268 from pascalVOC eTRIMS

detectors an advantage when detecting object classes char-
acterized by a considerable amount of variation in their spa-
tial extent. Conversely, when the object class is character-
ized to contain roughly rigid elements, classi�ers based on
a single template seem to be more appropriate. Lately, ap-
proaches based on the integral channels classi�er proposed
by Dollar et al.(2009) have demonstrated excellent quality
(Benenson et al. 2013) and detection speed (Benenson et al.
2012). The latter detector, dubbedVery Fast by the au-
thors, not only reaches 100 Hz on the task of pedestrian de-
tection, but also generalizes well to other classes. For exam-
ple, in the German traf�c sign detection challenge (Houben
et al. 2013), one of the winning approaches (Mathias et al.
2013) was based on this detector.

We decided to compare theVery Fast and the DPM
detector for the window detection task, using the follow-
ing setup. For both detectors we train one model in each
of the 5 folds of the Haussmann-speci�c window training
data, as described in Section3. For each fold we use all
available positive training samples, while patches not over-
lapping with windows are used as negative examples. Ad-
ditionally, we augment the negative set with 8383 images
not containing windows from the Pascal VOC dataset. Speed
comparisons were performed on an Intel Core i7 870 CPU
+ Nvidia GeForce GTX 590.

Deformable part-based model detector (DPM): The
DPMs are trained using the latest release (version 5) (Gir-
shick et al. 2012) with default settings. The number of com-
ponents is set to 1. The training took roughly 5 hours, and
the testing speed of 3:8 sec/image can be sped up by a factor
of 10� 15 by using a cascade (Felzenszwalb et al. 2010b).
We noticed that training this window detector with 2 or more
components only reduces the overall quality while increas-
ing the training time.

Very Fast detector:We use the publicly available open
source implementation of theVery Fast detector (Benen-
son et al. 2012). The training is initialized by using a feature
pool size of 30000 random features. We perform 4 rounds
of training (2000 stage classi�ers), where each round is fol-
lowed by bootstrapping 5000 hard negative samples. With
this setup, training lasts around 8 hours. The testing time
of 2:1 sec/image can be sped up by a factor of around 40
by approximating nearby scales and using a soft cascade, as
described in the original paper.
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Fig. 5 Comparison of the dataset-speci�c DPM andVery Fast on the
task of window detection. The plot shows the mean false positive per
image (FPPI) versus miss-rate, averaged over 5 folds.
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Fig. 6 Comparison of speci�c, generic and combined window detec-
tor on the ECP dataset. The combined detector is trained on the joint
training set of style speci�c and generic window samples.

The performance of all detectors is evaluated using the
Pascal VOC overlap criterion of 50% overlap over union.
Figure5 compares the mean detection rates for the task of
speci�c window detection on ECP, i.e. detectors trained with
Haussmann windows. For each of the 5 folds of the ECP
dataset we trained a DPM detector and aVery Fast de-
tector. All detectors are evaluated on their appropriate test-
ing sets and the results are then averaged over the 5 cross-
validation folds.
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Fig. 7 Example detections of theVery Fast speci�c window detector.
The color encodes the con�dence of the detection from high con�dence
(red) to low con�dence (black).

The results reveal that the single template-basedVery
Fast detector performs better than DPMs on this task. This
behavior may be explained with the fact that the window and
door classes do not consist of independently moving parts.
Furthermore, image recti�cation leads to axis-aligned win-
dow corners. Due to the better detection quality and speed
we opted for theVery Fast detector in all following de-
tection experiments. Figure7 shows some example window
detections of theVery Fast detector. For the task of car
detection, DPMs might have a better performance due to the
higher shape variability of the car class, but our experiments
indicate that theVery Fast detector performs adequately
on the few car samples in the eTRIMS dataset, where cars
are usually shown either from the side, front or rear.

5.2 Generic and speci�c object detectors

The ECP dataset contains 3096 windows and 109 doors, ex-
hibiting the style of typical Haussmannian facades. Hence,
all windows and doors have similar appearances and are
therefore well suited to train Haussmann-speci�c window
and door detectors. On the other hand, eTRIMS provides

only 1016 window and 85 door instances from many dif-
ferent architectural styles, which leads to a high variance of
e.g. appearance and aspect ratio. A common strategy to han-
dle such diverse object classes consists in clustering the data
into subsets (e.g. by their aspect ratio (Felzenszwalb et al.
2010a)) and independently training one detector for each
subset. This would further reduce the number of samples
used for training. We therefore did not train dataset-speci�c
detectors on eTRIMS. Instead, we use the eTRIMS dataset
as a proof of concept which shows that, even when using
generic detectors trained with data coming from different
sources, we can improve the labeling quality in our middle
layer.

To recapitulate, we use style-speci�c detectors if there
are enough samples in the training data. Otherwise, we train
generic detectors. Still, we can gain some insight by evalu-
ating the performance difference between detectors trained
on style-speci�c and generic input data.

In Figure 6 we compare the generic and speci�c win-
dow detectors on Haussmann. At 1 false positive per image
(FPPI), the generic detector discovers around 70% of the
windows, while the speci�c detector �nds more than 90%.

Even though the generic detector could be used to im-
prove window labeling in the middle layer, the speci�c de-
tector has much better detection rates with fewer false posi-
tives. On the other hand, the advantage of using a generic de-
tector lies in reduced training times when the system should
be applied to many different styles. Instead of always re-
training style-speci�c detectors - and having to know which
style is relevant for any individual building - one might opt
for collecting a large set of generic detectors for different
facade elements and just select which detectors to use for
speci�c styles. The detector obtained bycombining speci�c
and generic training data outperforms the generic detector,
however it does not match the quality of the speci�c detec-
tor. By adding speci�c Haussmann windows to the training
data, we get a better representation of Haussmann windows
and therefore improve over the generic detector model. On
the other hand, by adding generic window samples to the
Haussmann samples, we add a much higher variability to
an otherwise quite homogeneous training data. We believe
that this variability cannot be exploited, as the more gen-
eral window detector introduces new false positives rather
than detecting additional windows that were missed before.
In conclusion, style-speci�c detectors perform better than
generic detectors, especially when the data variation is lim-
ited (e.g. for Haussmann windows). Generic detectors can
still be used when it is infeasible to re-train detectors for
every new style or when insuf�cient style-speci�c training
data is available.
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Fig. 8 (Best viewed in color) Learning label distributions for the window detector. Window detections on the ECP validation set are sorted by their
score in descending order. High-scoring detections (top-left) provide a much stronger prior than the low-scoring detections (bottom-right)

5.3 Learning detector label distributions

In order to merge the information coming from the object
detectors with a semantic labeling of an image, we need
to transform the detector output (typically a set of bound-
ing boxes with scores) into per-pixel label probabilities. The
simplest approach would be to simply set the probability of
each pixel within a detection to 1 for the class corresponding
to the detector (e.g. window), and zero to all other classes.
However, window detections often cover other parts of the
facade, such as a balcony or wall. The classi�cation accu-
racy of balconies and walls would thus be negatively af-
fected. To illustrate this, Figure7 shows an example out-
put of the window detector, where the score of each detector
is color-coded (brighter means higher detector con�dence).
Furthermore, not all detections ought to have the same in�u-
ence: we want to signi�cantly boost window probabilities in
bounding boxes of high-scoring detections, but to be more
conservative with low-scoring detections, since they might
be false positives.

Let D = f dkg1� k� K be the set ofK detectors. In the ECP
dataset we use only a window and a door detector, soK =
2. We propose a novel way of learning the detector label
distributionsPdk(l jxi), i.e. the probabilities that a given point
xi in a test image belongs to one of the semantic labelsl 2 Y
according to the detectordk. To achieve this, we investigate
how detections of a certain score spatially overlap with the
ground truth labeled images in the validation set.

Let us denote the set ofN images in the validation set
with Xv = f xng1� n� N, and their corresponding ground truth
labeled images withYv = f yng1� n� N.

After running a detectordk on the validation set, we ob-
tain a set ofMk detections

Dv
k = f d j j d j = ( b j ; r j ;y j )g1� j� Mk (1)

where each detectiond j is characterized by its bounding box
b j , score (detector con�dence)r j and the labeled ground
truth corresponding to the image where the detection was
found: y j 2 Y. The detections in the setDv

k are sorted by
their score in descending order.

Then, for each detectiond j 2 Dv
k, we create a sub-image

Sj by extracting the area of the corresponding ground truth
labely j covered by the bounding boxb j , denoted as

Sj = y j [b j ] (2)

The extracted sub-images are all subsequently rescaled
to the same size using nearest-neighbor interpolation. For
the normalized widthunorm and heightvnorm we chose the
value of 100 pixels, since most detection sizes in our dataset
were on the same order of magnitude. The normalized sub-
images are denoted as

Snorm
j = NNResize(Sj ;vnorm;unorm) (3)

By construction, the normalized sub-images contain a
subset of labels (classes)Y . Next, we createjY j binary label
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masks for each sub-image, de�ned as

Bl
j = 1l (S

norm
j ); 8l 2 Y (4)

where1l is the indicator function selecting only pixels with
the labell . To obtain a smooth label distribution, we average
the binary label masks of detections with a similar score. For
each detection, we considerg neighboring detections in the
original sorted list of detections. Letj0 = max(1; j � g

2). We
de�ne

Ql
j =

1
g

j0+ g

å
i= j0

Bl
i ; 8l 2 Y (5)

as the per-pixel probability that a given pixel in the bounding
box b j is labeled withl . The obtainedQ j is a valid proba-
bility distribution, since

å
l2Y

Ql
j = Jv;u (6)

whereJv;u is a matrix of ones. In our experiments we set
g= 200, as there are on average 700 detections in the valida-
tion set. Very small values ofg result in distributions that are
no longer smooth, while by using higher values ofg the de-
tection score starts to lose its effect, as allQ j become rather
similar.

Examples of the resultingQ j are visualized in Figure8
for l 2 f window;wall;balconyg (other labels are not shown
for clarity). For high-scoring detections (top-left corner of
the image), our approach learns that the upper part of a de-
tection should be assigned to thewindow label, while the
lower part often corresponds to thebalconylabel. On the
other hand, for lower-scoring detections, the effect of false
positives �ring onwall areas is so prominent that thewall
label probability actually surpasses thewindowlabel. As we
will see, the effect of false positives on the �nal labeling will
be kept at bay, since our system hesitates to assign high label
probabilities to low-scoring detections.

We can consider these learned label distributions as a
look-up table during the testing phase. In a test imagextest,
we want to de�ne the label distribution for each pixel, given
the detections of a single detectordk. Initially, we assume
no prior knowledge and assign a uniform label distribution
to every pixel. Let

Pdk(l jxi) =
1

jY j
; 8xi 2 xtest; l 2 Y (7)

be the initial probability distribution of labels in the image,
wherel is the predicted label for pixelxi . After running the
detectordk on the evaluation set, we obtain a set ofMe

k de-
tections

De
k = f d j j d j = ( b j ; r j ;y j )g1� j� Me

k
(8)

For every detectiond j in setDe
k, we �nd the detectiondNN( j)

from the setDv
k with the closest score tor j . Its corresponding

learned label distributionQNN( j) is resized to �t the bound-
ing boxb j , denoted as

Qresized
NN( j) = NNResize(QNN( j) ;v j ;u j ) (9)

whereu j andv j denote the width and height of the detection
bounding boxb j , respectively. Finally, the pixel probability
distributions inside the bounding box are overwritten with
the learned distribution, written as

Pdk(l jxi) = Qresized
NN( j) (xi); 8xi 2 b j ; l 2 Y (10)

The process is repeated for each detectiond j in the setDe
k.

Note that each position withinPdk can be overwritten maxi-
mally once. There are no overlapping detections within one
detector output due to non-maxima suppression. Detections
of different object classes are handled by repeating the pro-
cess for each detectordk, resulting in several learned priors
Pdk.

5.4 Learning facade label maps

In the previous section, we learned the label distributions
only for pixels covered by detection bounding boxes. For
other pixels, we assumed a uniform label distribution. How-
ever, it is logical to assume that the probability of a certain
label also depends on the relative position of the pixel in the
image. For example, one would expectskypixels to appear
mostly in the upper parts of the image, while theshopor
road classes normally appear near the bottom of the image.

We can learn such a spatial prior in the form offacade
label mapsby analyzing the ground truth labels in the train-
ing set. First, we resize each ground truth imageyn from the
training setYt to a common size (unorm f = vnorm f = 500).
The normalized ground truth image is de�ned as

ynorm
n = NNResize(yn;vnorm f;unorm f) (11)

Similar to the previous section, we createjY j binary la-
bel masks de�ned as

Cl
n = 1l (y

norm
n ); 8l 2 Y (12)

which are then averaged over the training set, obtainingjY j
facade label maps

Rl =
1
Nt

Nt

å
n= 1

Cl
n; 8l 2 Y (13)

whereNt is the number of images in the training setYt .
Figure9 shows the learned label mapsRl for the ECP and
eTRIMS datasets. The �nal distribution of labels in an eval-
uation imagexe with dimensionsve andue is given by

Pl (l jxi) = NNResize(Rl ;v
e;ue); 8xi 2 xe; l 2 Y (14)
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Fig. 9 Learned label maps from the training set in one cross-validation fold, by averaging over the different facades. Brighter colors denote higher
label probability. Note the high level of regularity and alignment in the ECP dataset compared to the more washed-out probabilities for eTRIMS.

5.5 Incorporating detector knowledge into CRFs

In order to merge the labels coming from the bottom layer
with those introduced by the detectors from the middle layer,
we place a 2D Conditional Random Field (CRF) over the
image pixels. We seek to minimize the CRF energy, de�ned
as the weighted sum of unary potentials for each node and
all pairwise potentials between neighboring nodes:

E(yjx;w) = å
xi

F s(yi j xi ;w) (15)

+ å
xi

å
x j � xi

F p (yi ;y j j xi ;x j ;w) (16)

wherexi is an image pixel,yi 2 Y represents the variable
encoding the predicted label,w = f wseg;wdet;wlab;wpairg is
the set of CRF parameters, and the relation� represents the
4-pixel neighborhood. We use the standard Potts model as
the pairwise term, which encourages neighboring pixels to
take on the same label. This has the effect of smoothing the
output, with the degree of smoothing dependent on a param-
eterwpair. The pairwise term is de�ned as

F p (yi ;y j j xi ;x j ;w) =

(
0; if yi = y j

wpair; otherwise.
(17)

The unary term is a linear combination of the low-level
information from the segment classi�cation, the learned prior
facade label distributions, and the detector outputs:

F s(yi j xi ;w) = � wseglogPs (yi j xi)

�
K

å
k= 1

wdet
k logPdk(yi j xi) (18)

� wlab
yi

logPl (yi j xi)

Here,Ps is the per-pixel probabilistic output of the bot-
tom layer. Since the classi�cation in the bottom layer op-
erates at the level of segments, all pixels within the same
segment share the same probability. The detector potentials

Pdk and prior facade label map potentialsPl were de�ned in
Sections5.3and5.4, respectively. Parameterswseg,wdet and
wlab weigh the relative importance of segment classi�cation,
detector label maps, and facade label map priors. Note that
jwlabj = jY j, as we weigh each facade label map separately.

Applying the CRF model requires us to �nd the opti-
mal labeling of a test image, given the set of parametersw.
The approximate solution to this problem can be found ef�-
ciently using graphcut-based methods (Boykov et al. 2001),
since our CRF model contains only unary and submodular
pairwise terms. Additionally, due to the usage of the Potts
model, thea -expansion minimization guarantees a solution
that is within a factor of two of the global minimum (Boykov
et al. 2001). In the next section we describe how the param-
eter vectorw can be learned from the validation set.

5.6 Learning CRF parameters

There already exists a body of work on learning parameters
in random �eld models. Most of these approaches use ei-
ther a form of cross-validation or piecewise training. A good
overview of parameter learning in CRFs can be found, for
example, inKumar et al.(2005) andNowozin et al.(2010).
We decided to follow the approach ofSzummer et al.(2008),
which is an ef�cient technique of max-margin learning in
grid graphs, e.g. images, based on the structured support
vector machineTsochantaridis et al.(2005). This method
represents parameter estimation as a maximum margin learn-
ing problem, formulated as

max
w:kwk= 1

g s:t: (19)

E(y;xn;w) � E(yn;xn;w) � g 8y 6= yn 8n

wherexn is an image,yn its corresponding ground truth, and
n indexes all instances in the training set.

The learning algorithm constrains the energy of the ground
truth labelingyn to always be smaller than any other possible
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labelingy by a marging. Since there is an exponential num-
ber of possible image labelings, it is not feasible to solve
the problem formulated in Eq.19. The solution proposed
in Szummer et al.(2008) works with a much smaller subset
of labelingsf Sng, i.e. a constrained set. For each image, a
lowest-energy labeling is found using an ef�cient method,
such as graph cuts. If this energy does not satisfy the mar-
gin, the labeling is added to the subsetS(n) . After all images
are processed, the parametersw are updated to satisfy the
newly added constraints, and the process is repeated. Since
there is only a �nite number of labelings that can be added,
the procedure is guaranteed to converge.

The above formulation is further improved by enforc-
ing a larger margin when the labeling is far from the truth.
This difference between desired and candidate labeling can
be expressed in terms of aloss functionD(yn;y). By adding
slack variablesxn to account for constraint violations and
rescaling the margin as proposed inTaskar et al.(2005), the
following quadratic optimization problem is obtained:

min
w

1
2

kwk2 +
C
N

N

å
n= 1

xn s:t: 8y 2 Sn 8n (20)

E(y;xn;w) � E(yn;xn;w) � D(yn;y) � xn (21)

xn � 0

whereC is the regularization parameter andN is the number
of training images. A common approach is to use Hamming
loss, i.e. the number of mislabeled pixels in an image, as the
loss function. However, our datasets do not have a balanced
distribution of classes, since some classes only constitute a
small percentage of total pixels (e.g. thedoor class). Mis-
labeling the small classes does not signi�cantly change the
overall pixel accuracy, however the class-wise accuracy is
severely reduced. Therefore, we modify the loss function to
take into account the frequencies of classes in each ground
truth image, producing a greater loss when a low-frequency
label is misclassi�ed, resulting in a weighted Hamming loss:

D(yn;y) =
jyj

å
i= 1

f � 1(yn
i )[yn

i 6= yi ] (22)

where[:] is the indicator function, andf � 1(yn
i ) represents

the inverse frequency of the labelyn
i in the ground-truth im-

ageyn.
To calculate the most violated constraint in Eq.21 we

must �nd the labelingy which minimizes the re�ned energy
functionE0, de�ned as

E0(y;xn;w) = E(y;xn;w) � D(yn;y) (23)

As shown in Szummer et al.(2008), the loss function can
be 'absorbed' into the energy function if it decomposes the
same way as the energy. Since the weighted Hamming loss
decomposes over image pixels (nodes in the CRF), we can
transform it into an additional unary potential. This corre-
sponds to augmenting the unary potentials in the CRF:

F
0

s(yi j xi ;w) = F s(yi j xi ;w) � f � 1(yn
i )[yn

i 6= yi ] (24)

whereF s is de�ned in Eq.18. The resulting problem of min-
imizing E0can still be solved ef�ciently usinga -expansion,
as the energy remains submodular. Every labeling that vi-
olates the margin constraint in Eq.21 is added to the con-
straint setSn, and the parameter vectorw is updated by
minimizing Eq.20. The process is repeated untilw remains
unchanged. We have implemented this approach using the
SVMstruct software fromTsochantaridis et al.(2005).

6 Top Layer: Using Weak Architectural Principles

The previous two layers propose a generic approach to se-
mantic labeling, which is initially based on super-pixel clas-
si�cation and subsequently enriched by object detectors. Al-
though the results of the �rst two layers are quantitatively
convincing, the effect of the initial segmentation is still present
in the output. This manifests itself in the jagged boundaries
of some elements as well as the missing or misplaced fa-
cade elements. Hence it is dif�cult to use the output of these
layers to derive convincing facade models with clearly de-
�ned boundaries and structures. Therefore, in the top layer
we add meta-knowledge about buildings without de�ning a
full facade grammar, in contrast toTeboul et al.(2013). This
meta-knowledge is expressed through the concept ofweak
architectural principles.

An important advantage of these guidelines over proce-
dural grammar rules is that the former are directly observ-
able in the images, whereas the latter keep some concepts
implicit. Even if the combined application of a number of
grammar rules may lead to, for example, vertical alignment
of windows, there might be no single rule explicitly pre-
scribing such alignment. An issue with style grammars can
therefore be the indirect coupling between what they specify
and what can be easily veri�ed in the images. Our approach
also enables the modeling of irregular facades, as we use
architectural concepts as guidelines, not as hard constraints.
Some of the proposed principles are quite generic and can be
re-used for many different facade styles, while others were
intentionally designed with a certain style in mind, e.g. the
Haussmannian style. Similar to object detectors, most prin-
ciples are formulated for the objects in the facades (win-
dow, balcony, door), as these elements have a clearly de�ned
boundary. In the end, the interplay between data evidence
and various principles will in�uence the placement, modi�-
cation or removal of facade elements.

6.1 Overview

Our �rst task is to de�ne how the idea of weak architectural
principles can be integrated into a generic system which al-
lows for easy modi�cation and addition of these principles.
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Fig. 10A high-level overview of the top layer. The blocks highlighted in yellow depend on weak architectural principles, see text for description.

Therefore, we employ a modular design, where each prin-
ciple has a well-de�ned interface and may be individually
activated depending on the dataset at hand.

Figure10 shows the overview of our proposed system.
The �rst step is to generate proposals of facade elements
(bounding boxes with corresponding labels) from the output
of the middle layer (Section6.1.1). Let us de�ne a facade
con�guration F as a set of facade elements which consti-
tute a valid facade (i.e. no overlapping windows). The most
probable interpretation of the facade from the previous layer
is selected as the initial facade con�gurationF0, while non-
selected elements (such as overlapping windows) are placed
in a set of alternative facade elements, or apool P0.

The initial con�guration is not necessarilly the correct
one, as it might contain false positives. To remove them, we
perform random subsampling, retaining a subset of elements
in the con�guration, and moving the rest to the pool of alter-
native elements (Section6.1.2). The subsampling is repeated
in nr rounds to increase the likelihood that, in at least one
roundr, the subsampled con�gurationFr contains only true
positives. Based on the subsampled con�gurationFr , the
poolPr is extended by new facade elements (Section6.1.3).
An optimization method is proposed to select the subset of
elements in the augmented poolP�

r which best complements
the subsampled con�gurationFr (Section6.1.4), given an
energy functionEcon f ig. The best facade con�gurationFopt

over all nr is then fed into a post-processing step (Section
6.1.5).

The weak architectural principles are used for three dif-
ferent purposes in our system, see Table2. First, they can
proposenew elements (Section6.2.1). Second, some princi-

plesgradethe proposal con�gurations throughEcon f ig (Sec-
tion 6.2.2). Finally, certain principles are used tomodifythe
facade element in the post-processing step (Section6.2.3).

6.1.1 Extracting initial facade elements

Starting from the pixel-wise classi�cation output of the mid-
dle layer, the �rst step is to generate the initial con�gura-
tion of facade elementsF0. This con�guration should con-
tain facade elements such as windows, doors, or balconies.
More precisely, each element is determined with the bound-
ing box and its corresponding label. However, our middle
layer produces a labeled imageyL2, as opposed to discrete
elements. To generate facade element proposals, we start by
using connected components in the label mapyL2 and de�ne
a minimal bounding rectangleRz around thez-th connected
component.

This minimal bounding rectangle is often too large com-
pared to the actual facade element. Some initial super-pixels
�oat over the object's real boundaries, which leads to over-
sized minimal bounding rectangles. To mitigate this prob-
lem, we adjust the edges of each rectangleRz by maximizing
the coincidence with the edges of the connected component.
Each edge of the current rectangle is adjusted by shifting it
pixel by pixel towards the center of the rectangle. LetDz

denote the number of pixels inside ofRz belonging to the
connected component. We limit the search range with the
constraint that the number of connected component pixels
inside the new rectangle must not fall belowt init percent of
Dz. The thresholdt init was set to 0:6 in our experiments.
At each position of the element edge, we calculate the over-
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lap between the edge and boundary pixels of the connected
component, divided by the edge length.

We �nd at most two possible edge proposals per rectan-
gle side. The �rst one results from the highest edge overlap
with the connected component boundaries. The second pro-
posal is added only if the ratio between its overlap and the
highest edge overlap is abovet edge, set to 0:75 in our experi-
ments. The rectangle with the best combination of edge pro-
posals is added toF0, and all other combinations are added
to the pool of alternative elementsP0.

6.1.2 Sub-sampling

The initial facade con�gurationF0 obtained by the approach
described in the previous section can potentially suffer from
errors such as missing or misplaced elements, and false pos-
itives. As our proposed architectural principles are not de-
signed to remove elements, dealing with false positives re-
quire separate consideration.

Our approach to dealing with incorrect facade elements
is to repeatedly sub-sample the starting facade con�guration
with the goal of achieving at least one con�guration contain-
ing only correct elements. Furthermore, we do not discard
the elements that are not sampled, rather, we move them to
the pool of alternative elements for later consideration.

The sub-sampling is repeated innr rounds. In each round
we randomly splitF0 into two disjoint subsets: the elements
from the �rst subset are kept as the facade con�guration of
ther-th roundFr , while the other elements are added to the
pool P0, constructing the poolPr . The split is performed
element-wise by adding an element toPr with probability
prem, or to Fr with probability 1� prem. We setprem = 0:4,
which allows us to keep on average more than half of the
initial elements while at the same allowing to remove dif-
ferent combinations of potentially incorrect candidates. In
our experiments, the setting ofnr = 20 produced satisfac-
tory results. Further increase in the number of rounds typi-
cally does not result in �nding a better con�guration. When
reducing the number of rounds, the performance degrades
gracefully, converging to the initial labeling de�ned byF0.

6.1.3 Element proposing

Assuming that the con�gurationFr contains only true pos-
itives (which should hold true for at least one roundr), we
have a strong cue for discovering facade elements which are
not present in eitherFr or Pr . For example, we might search
for elements similar to those in the current facade con�gu-
ration.

At this point, we can plug in any weak architectural prin-
ciple which has the property of proposing new facade el-
ements. Depending on the con�gurationFr , different addi-
tional facade elements might be proposed in each round (see

examples in Section6.2.1). The facade elements proposed
by these principles are then simply added toPr , resulting in
the augmented poolP�

r .

6.1.4 Optimization

Starting from an incomplete facade con�gurationFr and an
augmented pool of elementsP�

r in the facade, our goal now
is to �nd the optimal facade con�gurationFopt

r with regard
to a certain energy function. We assume that the elements in
Fr are �xed, so the optimization amounts to the search for
the optimal subset of elements inP�

r which, combined with
the entire setFr , minimizes the energy function:

Fopt
r = Fr [ argmin

P� P�
r

Econ f ig(P[ Fr )

s:t: coverlap(P)
(25)

Thecoverlap constraints disallow any pair of overlapping el-
ements inP to be selected at the same time, and can be ex-
pressed as a set of linear inequalities of the formAx � 1.

Selecting a subset of elements can be viewed as a binary
integer optimization problem, where each variable indicates
whether the corresponding element is included in the sub-
set. In general, binary integer programming is NP-complete
(Karp 1972). There are of course certain subsets of energy
functions for which this optimization can be performed ef�-
ciently. For example,Kolmogorov and Zabih(2004) shows
that if the energy function can be written as a sum of func-
tions of up to two binary variables at a time (unary and reg-
ular pairwise potentials), the optimization can be performed
in polynomial time. However, we allow the energy function
to depend on an arbitrarily complex set of weak architec-
tural principles, see Section6.2.2. For this reason, and to
keep the optimization as general as possible, we assume no
prior structure of the energy function. This rules out the
use of deterministic optimization approaches, such as cut-
ting plane methods (where the objective function need not
be convex), branch-and-bound (no knowledge on lower and
upper bounds), or dynamic programming (no optimal sub-
structure property).

Therefore, our choice is limited to (meta)heuristic meth-
ods. The simplest approaches, e.g. hill climbing or coor-
dinate descent, are prone to getting stuck in local minima
(Russell et al. 1996). Monte Carlo methods such as simu-
lated annealing (Kirkpatrick et al. 1983) or MCMC (Gilks
et al. 1995) are more powerful, but typically require a large
number of objective function evaluations. Genetic algorithms
(Holland 1975) are another popular metaheuristic, which was
adapted for ef�cient solving of integer optimization prob-
lems byDeep et al.(2009). Although there is no proof of
convergence, the latter implementation was shown to com-
pare favorably to random search or annealing-based algo-
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rithms on certain datasets. We use an existing implemen-
tation of this approach in MATLAB's Global Optimization
Toolbox (Mathworks 2014), with default parameters, to solve
the minimization problem in Eq.25.

6.1.5 Post-processing

After nr rounds of sampling and optimization, the facade
con�guration with the lowest energyFopt is selected as the
best one. Note that the bounding boxes of facade elements
boxes are �xed during optimization. Therefore, we employ
post-processing principles on the best con�guration, to clean
up the �nal result by adjusting facade element boundaries.

6.2 Weak architectural principles

The weak architectural principles introduce meta-knowledge
about facades into the labeling process. All principles take a
con�guration of existing facade elements as input, and can
be divided into three main categories based on their output.
The �rst category contains principles which propose new fa-
cade elements. These are used for generating new objects,
which have not yet been discovered in the �rst two layers of
our pipeline. Second, some principles can be used to grade
proposal facade con�gurations, producing a single number,
the 'energy' of the con�guration as output. For example, the
alignment principle should produce low energy for con�g-
urations with well-aligned elements. Third, some principles
are used as a simple post-processing step, modifying exist-
ing elements in the facade con�guration. Table2 shows an
overview of our proposed principles, sorted into the three
main categories. The last two columns denote whether the
principle was used while analysing a certain dataset. In the
following sections, we describe in detail the aforementioned
categories of principles.

6.2.1 Element-proposing principles

Based on a given facade con�gurationFr , element-proposing
principles suggest new facade elements by exploiting meta-
knowledge about (style-speci�c) facade structure.

Fig. 11 Similarity principle: Left: windows marked with red rectangles
are the initially discovered windows. Right: the similarity voting space
contains strong peaks at previously undetected windows.

As shown in Table2, we identify three different prin-
ciples for the proposal of new facade elements, namely the
similarity, symmetryanddoor hypothesis. Each of these prin-
ciples proposes a separate set of facade elements, which we
denoteWsim, Wsym, andWdoor, respectively. Other princi-
ples can be added if necessary. We denote withW the set of
all facade element proposals generated by the principles, i.e.
W = f Wsim [ Wsym[ Wdoorg. The similarity principle is
based on the observation that most facades contain visually
similar objects. If some elements are missing in the current
facade con�guration, they can still be found through visual
similarity to the existing elements, see Figure11. This prin-
ciple is applied separately per object class and is parameter-
ized by the median widthumed and heightvmed of the object
category. Our implementation is similar to that ofMathias
et al.(2011a). Every object in the facade votes for similar el-
ements using an ISM-like voting scheme (Leibe et al. 2006).
As features we use self similarity descriptors (Shechtman
and Irani 2007) calculated at Harris corner points.

Let us consider a set of feature points that fall within the
bounding box of a single element in the facade con�gura-
tion. Each of these feature points is de�ned by its descriptor,
a vote vector to the center of the bounding box, and the size
of the bounding box of the element. For each feature point,

Table 2Weak architectural principles used to complement the segmentation results of the �rst two layers. A tick in the ”Propose“ column denotes
that the principle is used to propose new facade elements. Some principles can be used to evaluate the �tness of the facade con�guration, denoted
with a tick in the “Grade” column. The “Post-process” principles can be used in the last step of the inference procedure to modify the existing
facade elements. Last two columns indicate which principles are used for each of the datasets.

Principle Propose Grade Post-process ECP eTRIMS
(Non-)alignment: vertical and horizontal - X X X X
Similarity of different windows of the samefacade X - - X X
Facade symmetry X - - X X
Co-occurrence of elements - X - X -
Door hypothesis: �rst �oor, touching ground X X - X -
Vertical region order: {shop� , facade+ , roof � , sky� } - - X X -
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we search for 10 nearest neighbors among all feature points
in the image based on its descriptor. The neighbors then cast
votes into a global voting space using a Gaussian kernel of
size min(umed;vmed). The process is repeated for all facade
elements in the con�guration. After all votes are collected,
we perform greedy non-maximum suppression: each maxi-
mum de�nes an area of sizeumed � vmed in which we keep
the maximum and set the other values of the voting space in
that area to 0. Most of the maxima in the voting space will
be situated inside the bounding boxes of existing elements.
Each remaining maximum de�nes a bounding box with the
size de�ned as the median of bounding boxes sizes corre-
sponding to votes which contribute to the maximum.

As the similarity voting is performed based on the sub-
setFr (Section6.1.1), some maxima will correspond to fa-
cade elements already inFr . Only new elements build the
setWsim. We limit the number of new proposals tojFr j, as
we do not wish to add more proposals than the number of
elements currently in the con�guration.

Harris corners are also used as a simple measure in the
principle of verticalsymmetry. The interest points are mir-
rored about a symmetry axis (line) hypothesis. A match is
de�ned by two interest point locations, which are mirrors
of each other about the symmetry axis. Note that we only
match interest point locations at this point, not their descrip-
tors.

The maximum number of matches divided by the points
under consideration de�nes a simple symmetry score for
the corresponding symmetry axis. If symmetry is detected
(symmetry score> t sym), facade elements are mirrored about
the similarity line with the maximum score and constitute
the set of proposalsWsym. For the value oft sym we select
the lowest symmetry score from all symmetric facade ex-
amples in the training and validation sets. Figure12 shows
an example of a symmetric facade, with the symmetry axis
denoted as a dashed blue line.

Thedoor hypothesisprinciple creates a single door pro-
posalWdoor, and it is only applied whenFr does not already
contain a door bounding box. If there are no door objects in
the pool of alternative elements either, we fall back to the
probabilistic output of the bottom layer. We expect a door to
be at least the size of a median window in the facade. There-
fore, we �rst search for the maximum response by sliding a
window of sizeumed� vmed (median window size) over the
bottom layer probabilistic output and averaging pixel prob-
abilities corresponding to thedoor class inside that bound-
ing box. From the position with the maximum support, we
greedily grow the door bounding box until the average prob-
ability of the door class starts decreasing. Even if the real
image contains several doors, this principle is limited to pro-
duce only one element, the one with higher support.

Fig. 12 The (non-)alignment principle states that facade elements
should be either aligned or clearly off-center. In this image, windows
exhibit a high degree of horizontal and vertical alignment. Two win-
dows bordered with yellow lines are vertically off-center to other win-
dows. This should not be penalized, as this is a often-observed window
con�guration. The blue dashed line depicts the symmetry axis of the
facade.

6.2.2 Element-grading principles

Element-grading principles contribute to the energy function
Econ f ig which is used to judge a proposal facade con�gura-
tion F. We de�ne this energy function as

Econ f ig(F;yL2) = Edata(F;yL2)+ å
p2weakPrinciples

a pEp (F;yL2)

(26)

whereyL2 represents the middle layer output (CRF label-
ing). The data termEdata encourages the con�guration to be
as similar as possible to the prediction from the middle layer.
It is independent from any principle and de�ned by:

Edata(F;yL2) = å
l2Yob j

Edata
l (F;yL2) (27)

Edata
l (F;yL2) = � å

yi2yL2

[yi = l ^ g(yi ;F; l ) = 1]= å
yi2yL2

g(yi ;F; l ) (28)

+ å
yi2yL2

[yi = l ^ g(yi ;F; l ) 6= 1]= å
yi2yL2

[yi = l ]; (29)

whereYob j 2 Y denotes the subset of all object labels, as
only facade objects are optimized in this step. Note that we
de�ne the data term separately for each object labell 2 Yob j.
The functiong(yi ;F; l ) returns 1 whenyi is covered by a
bounding box with the same labell from F. Expression28
reduces the energy when labeled pixelyi is covered with a
facade element with the same label from con�gurationF,
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while expression29 penalizes object pixels not covered by
facade elements fromFr .

The energy of each grading principle is weighted bya p

and added to the total energy. We determine the values for
a p on the validation set. In the following, we will describe
the principles that contribute to the energy function.

The (non-)alignment principle is based on the obser-
vation that many facade elements of the same type are either
exactly aligned or clearly off-center (see the yellow lines in
Figure12). The energy for an object class is de�ned as

Ealign(F) = å
(e1;e2)

�
b (s(e1)

1 � s(e2)
1 ; t w) + b(s(e1)

2 � s(e2)
2 ; t w) + (30)

b(t(e1)
1 � t(e2)

1 ; t h) + b(t(e1)
2 � t(e2)

2 ; t h)
�

(31)

b(z; t ) =

(
t 2

6 (1� [1� z=t ]2)3; if jzj � t
t 2

6 ; if jzj > t
(32)

wheree1 ande2 refer to each possible combination of same-
class elements inF, and(s1; t1) and(s2; t2) represent the co-
ordinates of the top-left and bottom-right corners of an ele-
ment. The capped in�uence functionb rates the top, bottom,
left and right alignment of a pair of facade elements. The
function has a constant value as soon as the distance between
element boundaries exceeds a certain thresholdt . Based on
our initial observation that windows are either aligned or
completely misaligned, we sett w andt h to half of the me-
dian object width and height respectively.

The principle ofco-occurring elementsre�ects the ob-
servation that pairs of elements appear in certain �xed con-
�gurations. One particular case of this principle is window
and balcony co-occurrence: a facade should not have a bal-
cony without a corresponding window. Therefore, we �rst
try to assign at least one window to each balcony. Balconies
without a corresponding window are then penalized by adding
a constant valuet occ to the energy term. By settingt occ > 0
we increase the energy of solutions containing one or more
solitary balconies. The co-occurence principle might as well
be used for other pairs of elements or even as a facade ele-
ment proposing principle, but we leave this for future work.

6.2.3 Post-processing principles

The vertical region order principle states the speci�c or-
der of thesky, roof, wall andshopareas observed for Hauss-
mannian facades. We enforce such an order in our output
labeling (See Figure13). First, we �nd the initial split lines
between the aforementioned areas. This is done by �nding
the connected components of the corresponding labels and
placing a split line on the lower boundaries of the regions.
Then, similar to Section6.1.1, we test candidate split posi-
tions by moving the split lines pixel by pixel in the upward
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Fig. 13 The vertical region order principle determines the border be-
tween the sky, roof, wall and shop areas of the facade.

direction, seeking to maximize the overlap between the split
line and region boundary pixels. After the splitting positions
between the regions are found, we switch the labels of the
aforementioned classes to be consistent with the region or-
der.

The (non-)alignment principle is also used in the post-
processing step. We use the second part of the energy func-
tion Ealign (31) to align windows horizontally by adjust-
ing the upper and lower borders of their bounding boxes.
We �nd the local minimum of this energy with the iterative
BFGS Quasi-Newton method (Fletcher 1987). The result is
that all windows aligned horizontally within a tolerance of
t h will now be perfectly aligned with each other.

7 Results

We compare our approach to previous work on two datasets
for facade parsing. Tables3 and5 show the performance of
all approaches evaluated per class, as well as the average
pixel and class accuracies. We show the results of our sys-
tem for each layer of the pipeline together with the top layer
performance of our previous work (Martinović et al. 2012)
and the performance of other approaches. Example output
of our system can be found in Figures14and15.

7.1 ECP Database

All methods were evaluated following the same 5-fold cross
validation, evaluated on the updated annotations as described
in Martinović et al.(2012). In Table3, we compare our re-
sults with the Random Forest (RF) pixel classi�er ofTeboul
et al. (2010), the Reinforcement Learning (RL) grammar-
based approach fromTeboul et al.(2013), the domain knowl-
edge learning (DKL) work ofDai et al.(2012), and the re-
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Table 3 Performance on the ECP dataset (in percent). All experiments were performed with the same protocol (5-split cross-validation with 60
training, 20 validation and 20 testing images).

Window Wall Balcony Door Roof Sky Shop Pixel avg Class avg
RF (Teboul et al. 2010) 33 67 32 82 52 92 20 53.46 53.73
RL (Teboul et al. 2013) 55 82 49 43 52 97 82 73.24 65.66
DKL (Dai et al. 2012) 72 87 70 66 80 93 91 83.50 79.80
SPT (Tyle�cek and Šára 2013) 75 86 73 66 85 95 95 84.20 82.14
3Layer (Martinović et al. 2012) 75 88 70 67 74 97 93 84.17 80.71

ATLAS (ours)
Bottom layer 64 91 75 41 82 94 91 84.75 76.67
Middle layer 76 90 81 58 87 94 97 88.07 83.36
Top layer 78 89 87 71 79 96 95 88.02 85.22

Table 4 Comparison of our approach to the Reinforcement Learning (RL) approach of (Teboul et al. 2013) with different merit functions, on the
ECP dataset. RF: Random Forest; BL, ML, TL: Our bottom, middle and top layer output, respectively.

Pixel avg Class avg Pixel avg Class avg

ATLAS (ours)
BL 84.75 76.67

RL (Teboul et al. 2013)
RF merit 73.24 65.66

ML 88.07 83.36 BL merit 82.41 72.58
TL 88.02 85.22 ML merit 83.10 76.17

cent Spatial Pattern Templates (SPT) work byTyle�cek and
Šára(2013). We retrained and evaluated the RF and RL clas-
si�ers using the publicly available code, while DKL and
SPT results were provided by the respective authors.

As expected, the simplest approach - Random Forest
classi�er based directly on image patches (Teboul et al. 2010)
- exhibits the poorest performance. This can be partly at-
tributed to weak features (raw pixel values), and partly to
the lack of context, since every pixel is classi�ed based only
on its local patch of size 13x13. Compared to this approach,
our bottom layer already achieves a better performance for
all classes, due to the fact that we use a superpixel-based
approach and more discriminant extracted features.

The state-of-the-art grammar-based RL approach (Teboul
et al. 2013) requires a prior de�nition of a speci�c Hauss-
mannian-style procedural grammar. The free parameters of
the grammar are then optimized such that the agreement be-
tween the resulting labeling and the bottom-up merit func-
tion (RF labeling) is maximized. This approach greatly im-
proves upon the results of the earlier RF approach, yet still
performs worse than any layer output of our approach. One
of the reasons for this behaviour is that the somewhat over-
simpli�ed grammar restricts the space of possible facade la-
belings, imposing certain structure even if it is not present
in the image. For example, vertically misaligned roof win-
dows are not supported with the existing grammar, and are
thus mislabeled. Our approach does not suffer from these is-
sues. One may argue that the lower performance of the RL
method stems from their usage of less informative bottom-
up cues. Therefore, we investigate how the RL approach per-
forms when using much stronger merit functions, namely
the output of our bottom and middle layers. The results in
Table 4 (right) show that the RL method indeed bene�ts
from stronger bottom-up information. However, when using
our bottom and middle layer as the merit function, the RL

method achieves lower performance than the merit function
itself. This supports our claim that adding strong grammar
constraints can actually decrease the overall performance.

Comparable results to our bottom layer were achieved
by Dai et al.(2012), an approach which, like ours, forgoes
the usage of style-speci�c grammars. Instead, it is designed
to adapt to various building styles by learning weights for
different architectural principles. However, as the approach
was tested on only one building style (ECP dataset), it is dif-
�cult to assess the effectiveness of the learning algorithm.
Furthermore, their initial image segmentation into rectangu-
lar regions is �xed and might pose a problem when dealing
with more general facades containing irregular appearance
(e.g. eTrims dataset). Our top layer utilizes a more �exible
set of principles, which are not restricted to follow the initial
segmentation. For example, we allow classes such ascar or
vegetationto keep their irregular boundaries.

Another region-based method, SPT (Tyle�cek and Šára
2013) achieves comparable results to our bottom layer, even
outperforming it in class accuracy. This demonstrates that
adding a region-based CRF with higher-order potentials on
top of the initial segment classi�cation boosts performance.
We expect that our approach would bene�t by integrating
the SPT method in the �rst layer, which we leave for future
work.

When considering the added value of each layer in our
approach, it is clear that the middle layer produces the biggest
improvement in pixel accuracy for thewindow and door
classes, as was expected for the usage of object detectors.
Additionally, the accuracy of other classes goes up due to the
usage of learned label maps (Section5.4) and the smooth-
ing property of the CRF (Section5.5). By introducing high-
level knowledge through the top layer, we further improve
on most of the classes. The noticeable drop in theroof and
skyclass can be explained by the fact that the “region order”
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Table 5Performance on the eTRIMS dataset. Class accuracies are shown in percent. The per-class results fromFröhlich et al.(2012) were obtained
on only one cross-validation fold, thus we do not report them.

Building Car Door Pavement Road Sky Vegetation WindowPixel avg Class avg
CRF (Yang and Förstner 2011b) 71 35 16 22 35 78 66 75 65.80 49.75
HCRF (Yang and Förstner 2011a) 67 36 14 85 53 80 78 80 69.00 61.63
ICFHGS- (Fröhlich et al. 2012) - - - - - - - - 77.22 72.23
SPT (Tyle�cek and Šára 2013) 89 70 37 64 68 81 84 68 82.10 70.13
3Layer (Martinović et al. 2012) 86 67 18 35 47 91 81 80 80.81 63.20

ATLAS (ours)
Bottom layer 91 61 26 29 51 94 82 66 80.42 62.52
Middle layer 91 74 50 15 73 97 87 73 83.39 70.00
Top layer 89 73 49 15 73 97 87 75 82.90 69.81

principle (Section6.2.3) imposes a straight line to separate
regions which does not always match the real, more com-
plex, boundary. We nevertheless kept these strict horizontal
split lines between image regions, as they facilitate the pro-
cess of procedural facade modeling.

Compared to the top-layer output of our previous work
(Martinović et al. 2012), we improve on almost all classes,
boosting the average pixel accuracy to 88%. The increase
of nearly 4% was achieved through several re�nements of
this work, namely: using SVM as the region classi�er, us-
ing stronger detectors, learning label priors, learning CRF
parameters, and using the new top-layer sampling approach.

7.2 eTRIMS Database

As can be seen in Table5, we outperform all previous results
reported on the eTRIMS dataset in terms of overall pixel ac-
curacy. It is important to note that even though the methods
of Fröhlich et al.(2012); Tyle�cek and Šára(2013) achieve
higher class average, their pixel accuracy is still lower than
ours. This can be explained with the poor performance of the
pavementclass in our approach, especially after the smooth-
ing effect of our CRF, which increases the confusion with
the bordering segments (mainlyroad). One of the reasons
for this behaviour of the CRF is that its parameters are learned
on a relatively small validation set (10 images), reducing the
effect of unary potentials.

The difference between our bottom and middle layer is
most apparent for thewindow, car, anddoor classes. These
are the very classes for which we had trained object de-
tectors. Additionally, theroad class performance is signif-
icantly boosted due to the smoothing effect of the CRF (un-
fortunately, at the cost of the aforementionedpavementclass).
Finally, in the top layer, we only improve the performance
of the windowclass, which is not surprising, as this is the
only class in this dataset for which we use weak architectural
principles. We also observe a 3% performance drop for the
door andbuilding classes. By analyzing the output data, we
can see that the door accuracy drops due to the rectangular-
ization process (see Section6.1.1). Since some doors were
partially covered bywindowdetections in the middle layer,

Table 6 Computing times for our method on the ECP dataset. 'Train':
total time spent during training for each method. Items marked with '-'
in the 'Train' row denote that the method has no training phase. 'Test':
computing times for one test image. Note that label map learning is a
learned prior, so it has no computing time during testing.

Train Test

Bottom layer
Segmentation - 3.85 s
Feature extraction - 3.15 s
Classi�er 18 m 3.05 s

Middle layer
Detector 8 h 2.1 s
Label maps 1 m -
CRF 70 m 3.5 s

Top layer Subsampling and optimization - 180 s

they were re-labeled as windows when de�ning rectangu-
lar window regions. Furthermore, many of the buildings in
eTRIMS contain window shutters, which are annotated with
thebuilding class in the ground truth. Our generic detector,
on the other hand, is trained on data which includes the shut-
ters in the window structure, therefore increasing the confu-
sion between thewindowandbuilding class. Even though
the �nal pixel accuracy of the top layer is slightly lower
than the accuracy of the middle layer, the resulting labeling
is more visually pleasing, as can be observed in Figure14.
Compared to our previous work (Martinović et al. 2012), we
notice a signi�cant increase in the performance of almost all
classes.

7.3 Computing times

We performed all of our experiments on an Intel Core i7
870 CPU with 8 cores. Table6 shows the average comput-
ing times on the ECP dataset, differentiated with respect to
the different layers. Please note that the training phase dif-
fers for each method. As said in Section4, the SVM classi-
�er training is performed on the training set, while detector
label maps (Sections5.3 and5.4) and the CRF parameters
are learned on the validation set. The training protocol for
detectors is described in Section5.1.
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building door roadpavement skycar vegetation window

Fig. 14 Results on the eTRIMS dataset. (Left) The original image. (Middle-left/center/right) Outputs from the bottom, middle and top layers,
respectively. (Right) Ground truth.

7.4 Application: Image-based Procedural Modeling.

We use the output of the top layer in a straightforward pro-
cedural modeling scenario, encoding the facade as a set of
CityEngine CGA rules (Esri 2013). The 7 different classes
from the ECP dataset correspond to the terminal symbols
of the procedural grammar. However, we make a distinction
between facade element classes (window, balcony, door)and
region classes (wall, roof, sky, shop). Each element class is
modeled in a separate layer and then overlayed on the verti-

correctly (�rst row), while it is not forced to hallucinate non-
existing ones (second row).

8 Conclusion and future work

We proposed a new method for facade parsing which is di-
vided into three layers. For the bottom layer we explored
a variety of different segmentation and classi�er combina-
tions to get our initial bottom up facade labeling. In the
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window balcony roofdoor skywall shop

Fig. 15Results on the ECP dataset. (Left) The original image. (Middle-left/center/right) Outputs from the bottom, middle and top layers, respec-
tively. (Right) Ground truth.
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middle layer we then introduced the usage of object detec-
tors to improve over the initial labeling. The results from
the bottom and the object detector responses are combined
in a principled way by using a CRF formulation, where the
weights of the different CRF terms are estimated automat-
ically. Finally in the top layer we added facade speci�c in-
formation viaweak architectural principles. We proposed a
general framework in which principles can be removed or
added. This facilitates the usage of this layer for other fa-
cade styles. The output of our top layer are architecturally
plausible facade structures with clearly de�ned boundaries
and structures. Our method was evaluated on two datasets
and shows state of the art performance.

In a �nal step, we demonstrated how the output of our
top layer can directly be used for the image-based proce-
dural modeling of facades. Instead of building our system
upon a previously de�ned grammar – as demonstrated in the
previous chapter – we could actually infer procedural rules
from the output of our system. These rules are instance spe-
ci�c and if extracted from a single building can in that case
only be used to generate a model of that building. In a re-
cently published work it is shown that a probabilistic Hauss-
mann grammar can be learned automatically by using the
ground truth image annotations of multiple buildings of the
ECP dataset (Martinović and Van Gool 2013). Given this
result, as a future work, we plan to combine the grammar
learning with our approach. This means that the grammar
has to be learned from noisy input data in contrast to learn-
ing it from ground truth annotations. The complete pipeline
would bypass the tedious task of generating procedural fa-
cade grammars manually for many different facade styles
and result in procedural grammars from which buildings of
a certain style can be sampled.
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