
Fast Algorithms for Linear and Kernel SVM+

Wen Li1 Dengxin Dai1 Mingkui Tan2 Dong Xu3 Luc Van Gool1,4
1Computer Vision Laboratory, ETH Zürich, Switzerland

2School of Computer Science, University of Adelaide, Australia
3School of Electrical and Information Engineering, University of Sydney, Australia

4VISICS, ESAT/PSI, KU Leuven, Belgium

Abstract

The SVM+ approach has shown excellent performance
in visual recognition tasks for exploiting privileged infor-
mation in the training data. In this paper, we propose two
efficient algorithms for solving the linear and kernel SVM+,
respectively. For linear SVM+, we absorb the bias term
into the weight vector, and formulate a new optimization
problem with simpler constraints in the dual form. Then,
we develop an efficient dual coordinate descent algorithm
to solve the new optimization problem. For kernel SVM+,
we further apply the ℓ2-loss, which leads to a simpler op-
timization problem in the dual form with only half of dual
variables when compared with the dual form of the original
SVM+ method. More interestingly, we show that our new
dual problem can be efficiently solved by using the SMO
algorithm of the one-class SVM problem. Comprehensive
experiments on three datasets clearly demonstrate that our
proposed algorithms achieve significant speed-up than the
state-of-the-art solvers for linear and kernel SVM+.

1. Introduction

Many computer vision tasks contain privileged informa-
tion that only exists in the training data, and not available
during the test stage. For example, the training images
of many datasets for image recognition are annotated with
privileged information such as attributes, object bounding
boxes, textual descriptions, depth information. Although
the raw test images in the real-world applications are not
associated with such information, it has been demonstrated
that such information is useful for learning classifiers with
better recognition performance [5, 11, 20, 29, 32, 33, 35].

This problem is known as the Learning Using Privi-
leged Information (LUPI) problem [32]. Different from the
traditional learning paradigm, where the training data and
the test data have the same representation, LUPI leverages
training data containing additional information that is only
available during the training process, not in the testing pro-

cess. Such additional information in the training data is re-
ferred to as privileged information or hidden information.

Following the LUPI paradigm, Vapnik and Vashist [32]
proposed an SVM-like algorithm called SVM+, in which
they replace the slack variables in the standard SVM with
a slack function defined in the privileged feature space.
Through the slack function, the additional privileged in-
formation is used to model the loss function, which guides
the hyperplane learning in the main feature space. In con-
trast, the slack variables in the standard SVM are only con-
strained to non-negative values, which is often less effective
than the slack function in SVM+.

Although SVM+ can be formulated as a quadratic pro-
gramming problem in the dual form similarly as the stan-
dard SVM, it is still non-trivial to efficiently solve it, be-
cause the introduction of the slack function leads to more
constraints, and makes the number of dual variables dou-
bled. While an SMO-style algorithm was developed in [26],
the working set selection method is complicated, and the
algorithm is also slow in practice. Moreover, it is unclear
how to apply it to linear SVM+ without calculating the ker-
nel matrix, which is becoming more crucial, due to rapidly
increasing data in real-world applications.

In this paper, we propose two efficient algorithms for
solving linear SVM+ and kernel SVM+, respectively. In
particular, inspired by linear SVM [16], we augment the
feature vector with an additional constant element, and ab-
sorb the bias term in the decision function into the weight
vector, which leads to a dual form with simpler constraints.
The new linear SVM+ formulation can be efficiently solved
by using the dual coordinate descent method, in a similar
way to linear SVM. For kernel SVM+, we further propose
to apply the ℓ2-loss, which leads to a simpler optimization
problem in the dual form with only half of dual variables
when compared with the original SVM+. More interest-
ingly, we show that the resultant dual form is in analogy
to one-class SVM, which can thus be efficiently solved us-
ing the efficient sequential minimal optimization (SMO) al-
gorithm [28] with the existing state-of-the-art SVM solvers

1



such as LIBSVM [10, 1].
We implement our algorithms for linear and kernel

SVM+ based on LIBLINEAR [9] and LIBSVM [1], respec-
tively. We conduct extensive experiments on three tasks:
digit recognition on the MNIST+ dataset [32], scene recog-
nition on the Scene-15 dataset [22], and web image retrieval
on the NUS-WIDE dataset [4]. The results demonstrate that
our proposed algorithms achieve significant speed-up than
the state-of-the-art solvers for solving the linear and kernel
SVM+ problems.

2. Related Work
Learning Using Privileged Information (LUPI), as a

new learning paradigm, was first proposed by Vapnik and
Vashist [32], therein with the SVM+ algorithm. After that,
many variants of SVM+ have been proposed for solving dif-
ferent tasks [24, 12, 34, 29, 33, 23]. In [24], Liang and
Cherkassky developed a multi-task learning approach based
on SVM+. In [17], a multi-task multi-class extension of
SVM+ was proposed. Fouad et al. [12] designed a two-step
approach for metric learning, and Xu et al. [34] formulated
a convex formulation for metric learning using privileged
information based on the information theory metric learning
(ITML) method. Sharmanska et al. [29] proposed the Rank
Transfer method for utilizing privileged information, and
demonstrated the effectiveness of privileged information in
various computer vision tasks. In [23], Li et al. extended
SVM+ to the multi-instance learning scenario for image re-
trieval and object recognition by learning using web data.
In [33], Wang et al. proposed a classifier learning algorithm
for utilizing privileged information. In [11], Feyereisl et al.
extended structure SVM to exploiting privileged informa-
tion for object localization.

Vapnik and Vashist also showed that SVM+ has a faster
convergence rate than the standard SVM method under cer-
tain conditions [32]. A more thorough theoretic study of
SVM+ can be found in [27]. In [31], two mechanisms for
LUPI are further explained. Lapin et al. [21] also discov-
ered the relationship between SVM+ and weighted SVM,
while Li et al. [23] discussed the connection of the unsuper-
vised domain adaptation method and SVM+.

One closely related work is [26], in which an SMO-style
algorithm was developed for the SVM+ problem. However,
as the two sets of dual variables introduced for the con-
straints related to the main and privileged features in the
primal form are tangled together in the constraints of dual
problem, it is non-trivial to design the working set selection
method for the SMO algorithm, and leads to a complicated
algorithm that is less efficient in practice. Moreover, it is
also unclear that how to apply the the SMO-style algorithm
for solving the linear SVM+ problem without calculating
the kernel matrix. In contrast, in this paper, by absorbing the
bias term into the weight vector of the SVM+ classifier, we

arrive at an optimization problem with simpler constraints
in the dual form. Thus, the conventional dual coordinate
descent algorithm can be applied to efficiently solve linear
SVM+. Moreover, for the SVM+ form, we further apply the
ℓ2-loss and obtain a smaller dual problem with only a half of
dual variables of the original SVM+ formulation. The new
dual form shares a similar formulation with one-class SVM,
and thus can be solved by using the SMO algorithm imple-
mented in the existing SVM solvers such as LIBSVM [1]
without developing any new specific SMO algorithm. We
demonstrate that our proposed two algorithms are more ef-
ficient than the SMO-style algorithm in [26].

We are also aware that there are some works proposed
for solving the tasks in which training and test data contains
different information, which are less related to SVM+ [2, 3,
5, 7, 13, 14, 15, 20, 30, 35].

3. Learning Using Privileged Information
In the following, we denote a vector (resp., matrix) with

a lower (resp., upper) case letter in boldface. For example,
a represents a vector, and A a matrix. The transpose of a
vector or matrix is denoted by using the superscript ′. We
use 0n,1n ∈ Rn to represent the column vector with n
zeros and ones, respectively. We also simply use 0 and 1
instead of 0n and 1n, when the dimensionality is obvious.
Moreover, a ◦ b (resp., A ◦ B) denotes the element-wise
product between two vectors (resp., matrices).

In the Learning Using Privileged Information (LUPI)
paradigm [32], the training samples contain additional in-
formation that is not available in the test stage. Formally,
we represent the training data as {(xi, x̃i, yi)|i = 1, . . . , n},
where n is the total number of training samples, xi ∈ RD

is the main feature vector of the i-th training sample with
D being the feature dimensionality, x̃ ∈ RD̃ is the corre-
sponding privileged feature vector with D̃ being its dimen-
sion. The goal of LUPI is to learn a decision function f(x)
for classifying any test sample x ∈ RD in the main feature
space.

In [32], an SVM based approach called SVM+ was pro-
posed. Similar to SVM, the decision function in SVM+ is
represented as f(x) = w′ϕ(x) + b, where ϕ(·) is a fea-
ture mapping induced by the kernel on training data, w is
the weight vector, and b is the bias term. The objective of
SVM+ can be written as,

min
w̃,b̃,w,b

1

2

(
∥w∥2 + γ∥w̃∥2

)
+ C

n∑
i=1

ξ(w̃, b̃, ψ(x̃i)) (1)

s.t. yi(w
′ϕ(xi) + b) ≥ 1− ξ(w̃, b̃, ψ(x̃i)), (2)

ξ(w̃, b̃, ψ(x̃i)) ≥ 0, (3)

where ξ(w̃, b̃, ψ(x̃i)) = w̃′ψ(x̃) + b̃ is the slack function
defined in the privileged feature space, ψ(·) is the feature
mapping function for the privileged features, and w̃ and b̃



are respectively the weight vector and bias term for the slack
function. It can be observed that SVM+ replaces the slack
variables in the standard SVM formulation with the slack
function ξ(w̃, b̃, ψ(x̃i)). As a result, the loss occurred by
the training samples xi can be regularized by the privileged
information x̃i, therefore the hyperplane of SVM+ classifier
can be tuned by using the privileged information during the
training process.

Let us introduce two sets of dual valuables {αi|ni=1} and
{ζi|ni=1} for the constraints in (2) and (3), respectively, and
also denote two vectors α = [α1, . . . , αn]

′ ∈ Rn and ζ =
[ζ1, . . . , ζn]

′ ∈ Rn. We arrive at the dual form of SVM+,

min
(ζ,α)∈A

1

2
(α ◦ y)′K(α ◦ y)− 1′α (4)

+
1

2γ
(α+ ζ − C1)′K̃(α+ ζ − C1),

where A = {(ζ,α)|y′α = 0,1′(α + ζ − C1) = 0,α ≥
0, ζ ≥ 0} is the feasible set of (α, ζ), K ∈ Rn×n is the
kernel matrix based on the main training features with each
element being Kij = ϕ(xi)

′ϕ(xj), and K̃ ∈ Rn×n is the
kernel matrix based on the privileged features with each el-
ement being K̃ij = ψ(x̃i)

′ψ(x̃j). After solving the above
problem, the weight vectors w and w̃ can be reconstructed
based on the Karush-Kuhn-Tucker (KKT) conditions as,

w =
n∑

i=1

αiyiϕ(xi), (5)

w̃ =
1

γ

n∑
i=1

(αi + ζi − C)ψ(x̃i). (6)

Although the dual problem in (4) is a quadratic pro-
gramming problem, solving it with the existing optimiza-
tion toolboxes is certainly undesirable for real-world visual
recognition tasks. However, it is non-trivial to develop effi-
cient algorithm like the SMO algorithm for solving the stan-
dard SVM. The main difficulty comes from the constraint
1′(α + ζ − C1) = 0, in which two sets of dual variables
are tangled together, which makes the working set selection
method become complicated [26].

4. Dual Coordinate Descent Algorithm for
Solving Linear SVM+

In this section, we present the dual coordinate descent
method for solving the linear SVM+. In particular, we ab-
sorb the bias term into the weight vector w by appending a
constant entry of 1 to each feature vector, i.e., x← [x′, 1]′,
and w ← [w′, b]′ for the main features, and x̃ ← [x̃′, 1]′,
and w̃ ← [w̃′, b̃]′ for privileged information. For ease of
presentation, we still use w and x (resp., w̃, x̃) to repre-
sent the weight vector and feature vector for the main (resp.,
privileged) features.

Now, the objective of linear SVM+ can be reformulated
as follows,

min
w̃,w

1

2

(
∥w∥2 + γ∥w̃∥2

)
+ C

n∑
i=1

w̃′x̃ (7)

s.t. yiw
′xi ≥ 1− w̃′x̃,

w̃′x̃i ≥ 0,

and its dual form can be written as,

min
(ζ,α)∈A

1

2
(α ◦ y)′K(α ◦ y)− 1′α (8)

+
1

2γ
(α+ ζ − C1)′K̃(α+ ζ − C1),

where the feasible set becomes A = {(ζ,α)|α ≥ 0, ζ ≥
0}, K ∈ Rn×n is the linear kernel matrix of main features
defined as Kij = x′

ixj , and K̃ ∈ Rn×n is the linear ker-
nel matrix of privileged features defined as K̃ij = x̃′

ix̃
′
j .

Compared to the dual form of the original SVM+ formula-
tion (4), the objective function remains the same, but we do
not have the constraints y′α = 0,1′(α + ζ − C1) = 0
in (8), after absorbing of the bias terms in (7). The weight
vectors w and w̃ can be represented using the dual vari-
ables in the same way as in (5) and (6) without using the
feature mapping functions (i.e., we can set ϕ(xi) = xi and
ψ(x̃i) = x̃i.

Let us define Q =

[
K ◦ (yy′) + 1

γ K̃
1
γ K̃

1
γ K̃

1
γ K̃

]
∈

R2n×2n, β = [α′, ζ′]′ ∈ R2n, e = [(1 +
C
γ K̃1)′, (Cγ K̃1)′]′ ∈ R2n, the problem in (8) can be rewrit-
ten in a more concise form as,

min
β

1

2
β′Qβ − e′β (9)

s.t. β ≥ 0.

Now we develop a coordinate descent algorithm for the
problem in (9) similarly as that for linear SVM [16]. In
the dual coordinate descent algorithm, we iteratively update
one entry of β each time. This process is repeated until the
stopping criterion is reached.

In particular, let us denote f(β) = 1
2β

′Qβ−e′β, and we
propose to update the i-th entry as βi ← βi + d, where d is
a scalar variable that needs to be solved. By defining δ(i) =
[0, . . . , 0, 1, 0, . . . , 0] as the vector with all zeros except the
i-th entry being one, the subproblem for solving d can be
formulated as

min
d
f(β + dδ(i)) s.t. β + dδ(i) ≥ 0, (10)

which has an analytic solution as follows,

d = max(−βi,−
∇if(β)

Qii
) (11)



where Qii is the (i, i)-th entry of the matrix Q in (9), and
∇if(β) is the gradient of f(β) w.r.t. βi.

Now we discuss how to efficiently calculate the right-
hand side of (11). The scalar Qii can be pre-computed
efficiently, so the major problem is the calculation of
∇if(β). In particular, the gradient of f(β) can be writ-
ten as ∇f(β) = Qβ − e. Then, for any given index i, the
gradient of f(β) w.r.t. βi can be calculate as,

∇if(β) = (Qβ)i − ei =
2n∑
j=1

Qijβj − ei, (12)

where Qij is the (i, j)-th element of the matrix Q, and ei is
the i-th element of the vector e.

We discuss the detailed calculations in two cases. Let us
denote a matrix H = K ◦ yy′ ∈ Rn×n. For ∀i = 1, . . . , n,
we have

2n∑
j=1

Qijβj =
n∑

j=1

Hijαj +
1

γ

n∑
j=1

K̃ijαj +
1

γ

n∑
j=1

K̃ijζj

where Hij is the (i, j)-th element of the matrix H. We also
have ei = 1 + C

γ

∑n
j=1 K̃ij . By applying the KKT condi-

tions w.r.t. w and w̃ in (5) and (6), the gradient of f w.r.t. βi
in (12) can be written as,

∇if(β)i = yiw
′xi − 1 + w̃′x̃i, ∀1 ≤ i ≤ n (13)

which takes O(D + D̃) time complexity, and it can be fur-
ther speed-up if the feature vectors x and x̃ are sparse.

Similarly, for ∀i = n+ 1, . . . , 2n, we have

2n∑
j=1

Qijβj =
1

γ

n∑
j=1

K̃ijαj +
1

γ

n∑
j=1

K̃ijζj ,

and ei = C
γ

∑n
j=1 K̃ij . By using the KKT condition for w̃

in (6), the gradient in (12) can be written as,

∇if(β)i = w̃′x̃i, ∀n+ 1 ≤ i ≤ 2n, (14)

which takes O(D̃) time complexity only, and can also be
further speed-up if the feature vector x̃ is sparse. This com-
pletes the calculation of (11).

After solving d, we update the i-th dual variable βi by
using βi ← βi + d. Considering only one dual variable
is modified each time, the weight vectors can be updated
efficiently at each iteration. Note that we have αi = βi
when 1 ≤ i ≤ n, and ζi−n = βi, when n + 1 ≤ i ≤ n.
Based on (5) and (6), the updating rules for w and w̃ can be
written as

w ← w + dyixi, if 1 ≤ i ≤ n (15)

w̃ ← w̃ +
1

γ
dx̃i, if 1 ≤ i ≤ 2n (16)

Algorithm 1 Dual coordinate descent algorithm for solving
the linear SVM+ problem in (7)
Input: {(xi, x̃i, yi)|ni=1}, C, and γ.

1: Initialize w = 0, and w̃ = −C
γ

∑n
i=1 x̃i.

2: Set Qii = x′
ixi for 1 ≤ i ≤ n, and Qii = x̃′

ix̃i for
n+ 1 ≤ i ≤ 2n.

3: repeat
4: Randomly pick an index i.
5: if 1 ≤ i ≤ n then
6: Calculate∇if(β) using (13).
7: else
8: Calculate∇if(β) using (14).
9: end if

10: Calculate d using (11) based on Qii and ∇if(β).
11: if 1 ≤ i ≤ n then
12: Update w using (15).
13: end if
14: Update w̃ using (16).
15: until The convergence criterion is reached.
Output: Weight vectors w and w̃.

We summarize our dual coordinate descent algorithm for
solving linear SVM+ in Algorithm 1. We first initialize the
weight vectors as w = 0D, and w̃ = −C

γ

∑n
i=1 x̃i (i.e., the

solution of w and w̃ when α = 0 and ζ = 0). Then, each
time, we randomly pick up an index i, and solve d (i.e., the
change of βi) using (11). In particular, when 1 ≤ i ≤ n,
we calculate the gradient∇if(β) using (13), and update the
weight vectors w and w̃ using (15) and (16), respectively;
when n + 1 ≤ i ≤ 2n, we calculate the gradient ∇if(β)
using (14) and update the weight vector w̃ only using (16).
The above process is repeated until the objective converges.
Actually, the problem in (9) can be treated as a special form
of the linear SVM problem discussed in [16], so the conver-
gence of our algorithm follows that of the dual coordinate
descent algorithm for linear SVM. We implement our algo-
rithm based on the LIBLINEAR software [9].

5. SMO Algorithm for Solving Kernel SVM+
In this section, we develop an efficient algorithm for

solving kernel SVM+ based on the ρ-SVM formulation.
Similar to linear SVM+, we also augment the feature vec-
tor in the nonlinear feature space, so we can absorb the
bias term into the weight vector, i.e., ϕ(xi) ← [ϕ(xi)

′, 1]′

and w ← [w′, b]′ for the main features (resp., ψ(x̃i) ←
[ψ(x̃i)

′, 1]′ and w̃ ← [w̃′, b̃]′ for the privileged features)1.
For ease of presentation, we still use ϕ(xi) and w to de-

1Usually we do not know the explicit form of ϕ(·), but the inner prod-
uct of the augmented features can be simply calculated by adding one, i.e.,
ϕ(xi)

′ϕ(xj)← ϕ(xi)
′ϕ(xj)+1, so the kernel matrix based on the aug-

mented features can be calculated by K← K+ 11′. The same approach
can be applied to the privileged features.



note the nonlinear feature and weight vector for the main
features (resp., ψ(x̃i) and w̃ for privileged features) below.

Specifically, after using the augmented features, the de-
cision function can be represented as f(x) = w′ϕ(x). We
use the squared hinge loss for ρ-SVM, which leads to the ℓ2
loss ρ-SVM formulation as follows,

min
w,b,ρ

1

2
∥w∥2 + 1

2
C

n∑
i=1

ξ2i − ρ (17)

s.t. yi(w
′ϕ(xi)) ≥ ρ− ξi.

By replacing each slack variable ξi with the slack func-
tion ξ(x̃i) = w̃′ψ(x̃i), we arrive at the primal form of ℓ2-
SVM+ as follows,

min
w̃,w,ρ

1

2

(
∥w∥2 + γ∥w̃∥2

)
+

1

2
C

n∑
i=1

(w̃′ψ(x̃i))
2 − ρ

s.t. yi(w
′ϕ(xi)) ≥ ρ− w̃′ψ(x̃i). (18)

Now we derive the dual form of our ℓ2-SVM+ formula-
tion in (18). By introducing dual variables α1, . . . , αn for
the constraints in (18), we write its Lagrangian as follows,

L =
1

2

(
∥w∥2 + γ∥w̃∥2

)
+

1

2
C

n∑
i=1

(w̃′ψ(x̃i))
2 − ρ (19)

−
n∑

i=1

αi (yi(w
′ϕ(xi))− ρ+ w̃′ψ(x̃i)) ,

Let us denote a vector α = [α1, . . . , αn]
′. By setting

the derivatives of (19) w.r.t. to the primal variables w, w̃, ρ
to zeros, we obtain the constraint α′1 = 1 as well as two
KKT conditions for w and w̃ as,

w =

n∑
i=1

αiyiϕ(xi), (20)

w̃ =
n∑

i=1

αi (γI+ CPP′)
−1
ψ(x̃i), (21)

where P = [ψ(x̃1), . . . , ψ(x̃n)] is the data matrix of privi-
leged features in the nonlinear feature space.

Substituting the two equations in (20) and (21) into the
Lagrangian in (19), we arrive at the dual form of (18),

min
α

1

2
α′(H+G)α (22)

s.t. 1′α = 1, α ≥ 0,

where G = P′ (γI+ CPP′)
−1

P, H = K ◦ (yy′), and
K is the kernel matrix of augmented main features with
Kij = ϕ(xi)

′ϕ(xj) being its (i, j)-th element. Based on
the equation (γI+ CPP′)

−1
P = P (γI+ CP′P)

−1, we

have G = P′P (γI+ CP′P)
−1

= K̃
(
γI+ CK̃

)−1

,

Algorithm 2 Algorithm for solving the ℓ2-SVM+ problem
in (18)

Input: K, K̃ ∈ Rn×n, C, and γ.

1: Calculate G = 1
C I− 1

C

(
I+ C

γ K̃
)−1

.
2: Set Q = H+G, and ν = 1/n.
3: Obtain α by solving the problem in (23) with the one-

class SVM solver in LIBSVM.
Output: Dual variable vector α.

where K̃ is the kernel matrix of augmented privileged fea-
tures with K̃ij = ψ(xi)

′ψ(xj) being its (i, j)-th element.
By further applying the Woodbury Identity, we obtain G =

1
C I− 1

C

(
I+ C

γ K̃
)−1

.
Note the problem in (22) is a quadratic programming

problem with the number of dual variables being n, which
is only half number of variables in the dual form of the orig-
inal SVM+ method in (4). Moreover, the constraints in (22)
are also simpler, so it can be solved by using the efficient
SMO algorithm. Actually, the problem in (22) shares a sim-
ilar form with one-class SVM in the LIBSVM software [1].
In particular, we write the dual form of one-class SVM as
follows (Eqn. (8) in [1]),

min
α

1

2
α′Qα (23)

s.t. 1′α = νn, 0 ≤ α ≤ 1,

where Q is the kernel matrix in one-class SVM, ν is a pre-
defined parameter, n is total the number of training samples.
Note the constraints α ≥ 0 and 1′α = 1 in (22) imply
0 ≤ α ≤ 1. By setting Q = (H+G) and ν = 1

n , the dual
problem of ℓ2-SVM+ in (22) can be converted to the opti-
mization problem in (23). Therefore, we ignore the details
of the SMO algorithm here, and employ the SMO imple-
mentation in LIBSVM to solve our ℓ2-SVM+ problem.

The detailed algorithm for solving ℓ2-SVM+ is described
in Algorithm 2. We first calculate the matrix G using the
kernel matrix of privileged features. Then we call the one-
SVM solver in LIBSVM to obtain the dual variable vector
α. Finally, the decision function can be written as f(x) =∑n

i=1 αiyiϕ(xi)
′ϕ(x), where x is the test sample, and ϕ(·)

is the augmented nonlinear feature vector.
Although in our algorithm a matrix inverse operator is

involved when calculating the matrix G, the size of G is
only n × n, and the subsequent QP problem is also only
with n dual variables. With the excellent implementation of
matrix inverse function such as that in MATLAB, and the
SMO implementation in LIBSVM, our algorithm is much
faster than the existing SVM+ solver [26] in practice.

Moreover, in some scenarios such as multi-instance
learning using privileged information [25], it often needs to



iteratively solve the SVM+ problem. In this case, after cal-
culating the matrix inverse, we only need to iteratively solve
the one-class SVM, which is much more efficient than the
traditional method which needs to iteratively optimize a QP
problem for solving the SVM+ problem (see Section 6.2).

6. Experiments
In this section, we evaluate the efficiency of our proposed

two algorithms for linear and kernel SVM+, and compare
them with the existing SVM+ solvers for the image clas-
sification and web image retrieval tasks. Considering we
solve two variants of SVM+ instead of the original SVM+
formulation, we also report the classification/retrieval per-
formance for comparisons.

6.1. Image Classification

We conduct the experiments for two image recognition
tasks: digit recognition and scene recognition.
Datasets: In the digit classification task, Vapnik and
Vashist [32] have shown that the additional textual descrip-
tions in training data are helpful for learning a better clas-
sifier. We employ the benchmark MNIST+ dataset used in
[32, 26] for classifying the images as two digits “5” and “8”.
The dataset is constructed by using a subset of the MNIST
dataset containing the images of the digits “5” and “8”. It is
split into a training set of 100 images (50 images with digit
“5”, and 50 images with digit “8”), a validation set of 4, 002
images, and a test set of 1, 866 images. All the images are
resized into 10 × 10 pixels, and the 100-d vector of raw
pixels is used as the main feature vector for each image.
Each training image is additionally supplied with a poetic
description (see [32] for the examples), which is converted
into a 21-d textual feature vector, and used as the privileged
information in SVM+.

For the scene recognition task, we employ the Scene-15
dataset[22], which contains 4, 485 images of 15 different
scenes. We split the data into three sets: 300 images as the
training set, 40% images as the test set, and the rest as the
validation set. We downsample all the images by factor 3,
because small images are preferred in real-world applica-
tions for saving the storage of visual data at test time. The
CNN features [19] are extracted with the CAFFE frame-
work [18], which has shown good performance in various
visual recognition tasks. During training, the CNN fea-
tures extracted from the original images are treated as privi-
leged information, and the CNN features extracted from the
downsampled images as the main features. The experimen-
tal setting is inspired by [6], where high-resolution images
yield superior performance than low-resolution images for
standard vision tasks. PCA is applied on two types of fea-
tures to obtain 100-d compact representations.
Baselines: In our experiments, we consider two settings,
the linear case and the nonlinear case. In the linear case,

there is no solver specifically designed for linear SVM+.
So we mainly compare our method with the following two
baselines,

• LIBLINEAR: The standard linear SVM without us-
ing privileged information implemented in LIBLIN-
EAR [9]. We include it as a baseline for investigating
the effectiveness of our linear SVM+ formulation.

• gSMO: The SMO-style algorithm for solving SVM+
in the dual form, which is proposed in [26]. We use
the released C++ implementation from the authors.

Note that the gSMO method was designed for solving ker-
nel SVM+, but it can still take the feature vectors as the
input. So we also include it as a baseline for the linear case.

For the nonlinear case, the Gaussian kernel is used for all
the methods, in which the bandwidth parameter is set as the
mean of distances between all training samples by default.
Besides the aforementioned gSMO method, we also com-
pare our ℓ2-SVM+ method with the existing state-of-the-
art solvers of SVM+, and also include the standard SVM
solved by LIBSVM as a baseline for investigating the effec-
tiveness of SVM+.

• SVM: The standard SVM without using privileged in-
formation, whihc is solved by using LIBSVM [9]. We
include it as a baseline for investigating the effective-
ness of our ℓ2-loss SVM+ formulation.

• CVX-SVM+: An implementation based on the CVX
optimization toolbox provided in [24]. It directly
solves the quadratic programming problem in (4) us-
ing the QP solver in CVX.

• MAT-SVM+: We additionally include the QP solver
implemented in MATLAB R2014b as a baseline, and
employ it to solve the QP problem in (4).

For all methods, the tradeoff parameters are determined
based on the validation set. One-vs-all strategy is used on
the Scene-15 dataset, which contains 15 classes. The classi-
fication accuracy on the test set is reported for performance
evaluation. The training time of all methods is measured on
a workstation with Intel i7-3770K CPU@3.50GHz.

6.1.1 Experiments on Linear SVM+

Experimental results: The classification accuracies and
training time of all methods on two datasets are summa-
rized in Table 1. In terms of the classification accuracy, we
observe that both our linear SVM+ algorithm and gSMO
achieve better results than the baseline linear SVM method,
which demonstrates the effectiveness of exploiting the po-
etic description as privileged information for improving the
image based digit recognition task. Our method achieves
slight better results than the gSMO method, possibly be-
cause we use a new variant of SVM+, and our dual coordi-
nate descent algorithm guarantees the optimal solution.



Table 1. Accuracies (%) and training time of all methods on the
MNIST+ and Scene-15 datasets in linear case. Our results are
highlighted in boldface.

MNIST+ Scene-15
Accuracy Time (ms) Accuracy Time (s)

SVM 81.73 0.6 77.56 0.76

SVM+ gSMO 84.35 72.1 78.05 2.52
Ours 84.62 9.5 78.10 0.87

40 50 60 70 80 90

70

72

74

76

78

Percentage of Training Data (%)

A
cc

u
ra

cy
 (

%
)

 

 

SVM

gSMO

Ours

(a)

40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

Percentage of Training Data (%)

T
ra

in
in

g
 T

im
e 

(s
)

 

 

SVM

gSMO

Ours

(b)

Figure 1. The accuracies (Figure (a)) and the training time (Fig-
ure (b)) of different methods for solving linear SVM+ when using
different number of training samples on the Scene-15 dataset.

In terms of the training time, both SVM+ algorithms are
slower than the baseline linear SVM, because that more
complicated objective functions are used to incorporate
privileged information. Our new dual coordinate descent al-
gorithm for linear SVM+ is much faster than gSMO, which
generally takes only a bit more training time than the linear
SVM as shown in Table 1.
Results using different number of training samples: We
further take the Scene-15 dataset to investigate the accura-
cies and efficiency of different methods w.r.t. different num-
ber of training samples. Similarly as in [32, 26], we ran-
domly sample 40%, 50%, 60%, 70%, 80% and 90% train-
ing samples for learning SVM and SVM+ classifiers. The
experiments are repeated for 10 times, and we plot the av-
erage accuracies and training time of different methods in
Figure 1. While the accuracies of all methods become
higher when the number of training data increases, our lin-
ear SVM+ algorithm consistently outperforms the linear
SVM method, and generally achieves slight better perfor-
mance than the gSMO method. In term of the training time,
it can be observed that the training time of our method in-
creases linearly w.r.t. the number of training samples, and is
several times faster than the baseline gSMO method.
Convergence: As mentioned in Section 4, our algorithm
can be treated as a special form of the linear SVM discussed
in [16]. So it shares the similar convergence property as the
dual coordinate descent algorithm for linear SVM. To verify
the convergence of our algorithm, in Figure 2, we take the
MNIST+ dataset as an example to plot the objective values
of our algorithm when the number of iterations2 increases.
It can be observed that our algorithm converges well. The

2Similarly as in LIBLINEAR, one iteration refers to that we pass all
training samples once.

10
0

10
1

10
2

10
3

−2

0

2

4

6
x 10

4

Number of Iterations

O
b
je

ct
iv

e 
V

al
u
e

Figure 2. The objective of our coordinate descent algorithm for
linear SVM+ on MNIST+ dataset.

objective value decreases very fast within the first ten itera-
tions, and continues to decrease as the number of iterations
increases.

6.1.2 Experiments on Kernel SVM+

Experimental results: We report the classification accu-
racies and training time of all methods on two datasets
when using the Gaussian kernel in Table 2. On the
MNIST+ dataset, we observe that the SVM+ algorithms
again achieve better results than the baseline SVM algo-
rithm, due to the utilizing of poetic descriptions as priv-
ileged information. However, on the Scene-15 dataset,
gSMO and CVX-SVM+ are worse than the standard SVM
method. Our ℓ2-SVM+ algorithm achieves better result than
the baseline algorithms, showing our new formulation for
kernel SVM+ is effective for the scene classification prob-
lem on this dataset.

In terms of the training time, we observer that our
newly proposed algorithm is the most efficient one among
all SVM+ algorithms, and generally achieves order-of-
magnitude speedup over the second fastest algorithm (MAT-
SVM+ on the MNIST+ dataset, and gSMO on the Scene-15
dataset). The results demonstrate the efficiency of our new
reformulation of kernel SVM+. With the reformulation, we
convert it as a one-class SVM problem, and take advantage
of the existing state-of-the-art SMO implementation in LIB-
SVM to solve it.
Results using different number of training samples:
Similarly as for the linear case, in Figure 3, we take the
Scene-15 dataset to plot the classification accuracies and
training time of different methods by using different per-
centages of training data. The CVX-SVM+ method is not
included when reporting the training time for better visu-
alization. We observe that our ℓ2-SVM+ algorithm outper-
forms other SVM+ algorithms in terms of both classifica-
tion accuracy and efficiency when varying the number of
training samples.

6.2. Web Image Retrieval

In this subsection, we demonstrate the advantage of
our ℓ2-SVM+ algorithm for solving the multiple instance



Table 2. Accuracies (%) and training time of all methods on the
MNIST+ and Scene-15 dataset using the Gaussian kernel. Our
results are highlighted in boldface.

MNIST+ Scene-15
Acc. Time (ms) Acc. Time (s)

SVM 92.34 0.7 78.79 0.80

SVM+

gSMO 92.77 78.8 77.91 9.23
CVX-SVM+ 93.14 767.7 78.32 47.16
MAT-SVM+ 93.14 54.9 79.38 12.07
Ours 93.15 1.3 80.57 1.08

40 60 80 100
70

72

74

76

78

80

82

Percentage of Training Data (%)

A
cc

u
ra

cy
 (

%
)

 

 

SVM

gSMO

MAT−SVM+

CVX−SVM+

Ours

(a)

40 60 80 100
0

5

10

Percentage of Training Data (%)

T
ra

in
in

g
 T

im
e 

(s
)

 

 

SVM

gSMO

MAT−SVM+

Ours

(b)

Figure 3. The accuracies (Figure (a)) and training time (Figure (b))
of different methods for solving kernel SVM+ when using differ-
ent number of training samples on the Scene-15 dataset.

learning using privileged information problem. We em-
ploy the mi-SVM-PI algorithm proposed in [25] to eval-
uate different SVM+ solvers. The mi-SVM-PI algorithm
needs to iteratively solves the SVM+ problem, and simul-
taneously infer the labels for training samples under MIL
constraints. We compare the mi-SVM-PI method based on
our ℓ2-SVM+ algorithm, with their original implementation
based on MATALB.
Experimental setting: It has been shown that the textual
descriptions associated with the web images are effective
for learning better classifiers using multiple instance learn-
ing approaches [23, 25]. Following [23, 25], we employ the
NUS-WIDE web image dataset, which contains 269, 648
web images crawled from the image sharing website Flickr.
It is officially split into a training set of 60% images, and
test set of 40% images. All the images are accompanied
with textual tags provided by Flickr users. The test images
are annotated for 81 concepts. Similarly as in [23], we ex-
tract the DeCAF6 features [8], which leads to a 4096-dim
feature vector for each web image. For the training data,
we also extract a 200-dim term frequency feature from the
associated textual tags of each image, and use it as the priv-
ileged information. 25 positive bags (resp., negative bags)
are constructed with each bag containing 15 relevant images
(resp., irrelevant images) as the training data for each con-
cept. The Gaussian kernel is used for the visual features,
and linear kernel is used for the textual features. The image
retrieval performance is evaluated on the test set, in which
only the visual features are extracted. The average precision
based on the top-ranked 100 test images is used for perfor-
mance evaluation, and the mean average precision (MAP)

Table 3. MAP (%) and training time (s) of different methods on
the NUS-WIDE dataset. Our results are highlighted in boldface.

MAP Time (s)
SVM 54.41 9.80

SVM+ MAT-SVM+ 55.63 204.10
Ours 55.68 19.44

mi-SVM-PI MAT-SVM+ 59.11 765.47
Ours 59.43 24.26

over 81 concepts is reported. Moreover, the training time
of all methods over 81 concepts is reported for efficiency
evaluation.
Experimental results: We report the MAPs and training
time of different methods in Table 3. From the table, we
observe that the SVM+ methods using both solvers achieve
better results than the standard SVM method, because of
using additional textual information in the training process.
Moreover, by incorporating the multi-instance learning ap-
proach, the MAPs of mi-SVM-PI method based on both
solvers are further improved. In both cases, the methods
based on our ℓ2-SVM+ achieve slight better results than the
ones based on MAT-SVM+.

In terms of the efficiency, we observe that our ℓ2-SVM+
again achieves order-of-magnitude speed-up when com-
pared with MAT-SVM+. When incorporating the multi-
instance learning approach, the mi-SVM-PI based on our
ℓ2-SVM+ uses only a bit more time than ℓ2-SVM+, be-
cause we only need to calculate the matrix inverse once
for each concept, and iteratively solve the one-class SVM
problem. In contrast, the mi-SVM-PI based on MAT-SVM+
needs to iteratively solve the QP problem introduced by the
SVM+ problem. Therefore, our method is more than 30
times faster than MAT-SVM+ on the NUS-WIDE dataset.

7. Conclusion

In this paper, we have proposed two new algorithms for
solving the linear and kernel SVM+. By reformulating the
original SVM+ method, we obtain the dual problem with
simpler constraints. Then we develop an efficient dual coor-
dinate descent algorithm to solve the linear SVM+ problem.
We also show that the kernel SVM+ using the ℓ2-loss can be
converted to the one-class SVM problem, and thus can be
efficiently solved by using the SMO algorithm implemented
in the existing SVM solvers such as LIBSVM. Comprehen-
sive experiments on three tasks have demonstrated the ef-
ficiency of our proposed algorithms for linear and kernel
SVM+.

Acknowledgement

The work is supported by the ERC Advanced Grant
Varcity (#273940).



References
[1] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support

vector machines. ACM TIST, 2:27:1–27:27, 2011. 2, 5
[2] J. Chen, X. Liu, and S. Lyu. Boosting with side information.

In ACCV, 2012. 2
[3] L. Chen, W. Li, and D. Xu. Recognizing RGB images by

learning from RGB-D data. In CVPR, pages 1418–1425,
2014. 2

[4] T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng.
NUS-WIDE: a real-world web image database from National
University of Singapore. In CIVR, 2009. 2

[5] D. Dai, T. Kroeger, R. Timofte, and L. Van Gool. Metric im-
itation by manifold transfer for efficient vision applications.
In CVPR, 2015. 1, 2

[6] D. Dai, Y. Wang, Y. Chen, and L. Van Gool. Is image super-
resolution helpful for other vision tasks? In IEEE Win-
ter Conference on Applications of Computer Vision (WACV),
2016. 6

[7] J. Ding, M. Shao, and Y. Fu. Latent low-rank transfer sub-
space learning for missing modality recognition. In AAAI,
2014. 2

[8] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang,
E. Tzeng, and T. Darrell. DeCAF: A deep convolutional acti-
vation feature for generic visual recognition. In ICML, 2014.
8

[9] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J.
Lin. LIBLINEAR: A library for large linear classification.
JMLR, 9:1871–1874, 2008. 2, 4, 6

[10] R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set selection
using second order information for training SVM. JMLR,
6:1889–1918, 2005. 2

[11] J. Feyereisl, S. Kwak, J. Son, and B. Han. Object localization
based on structural SVM using privileged information. In
NIPS, 2015. 1, 2

[12] S. Fouad, P. Tino, S. Raychaudhury, and P. Schneider. In-
corporating privileged information through metric learning.
T-NNLS, 24(7):1086–1098, 2013. 2

[13] S. Gupta, J. Hoffman, and J. Malik. Cross modal distillation
for supervision transfer. arXiv:1507.00448, 2015. 2

[14] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge
in a neural network. In Deep Learning and Representation
Learning Workshop, NIPS, 2014. 2

[15] J. Hoffman, S. Guadarrama, E. Tzeng, R. Hu, J. Donahue,
R. Girshick, T. Darrell, and K. Saenko. LSDA: Large scale
detection through adaptation. In NIPS, 2014. 2

[16] C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and
S. Sundararajan. A dual coordinate descent method for large-
scale linear SVM. In ICML, 2008. 1, 3, 4, 7

[17] Y. Ji, S. Sun, and Y. Lu. Multitask multiclass privileged in-
formation support vector machines. In ICPR, 2012. 2

[18] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional
architecture for fast feature embedding. In ACM MM, 2014.
6

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
NIPS, 2012. 6

[20] C. H. Lampert, H. Nickisch, and S. Harmeling. Attribute-
based classification for zero-shot visual object categoriza-
tion. T-PAMI, 2013. 1, 2

[21] M. Lapin, M. Hein, and B. Schiele. Learning using privi-
leged information: SVM+ and weighted SVM. Neural Net-
works, 53:95–108, 2014. 2

[22] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of
features: Spatial pyramid matching for recognizing natural
scene categories. In CVPR, 2006. 2, 6

[23] W. Li, L. Niu, and D. Xu. Exploiting privileged information
from web data for image categorization. In ECCV, pages
437–452, 2014. 2, 8

[24] L. Liang and V. Cherkassky. Connection between SVM+ and
multi-task learning. In IJCNN, 2008. 2, 6

[25] L. Niu, W. Li, and D. Xu. Exploiting privileged information
from web data for action and event recognition. IJCV, 2015.
5, 8

[26] D. Pechyony, R. Izmailov, A. Vashist, and V. Vapnik. SMO-
style algorithms for learning using privileged information. In
DMIN, 2010. 1, 2, 3, 5, 6, 7

[27] D. Pechyony and V. Vapnik. On the theory of learning with
privileged information. In NIPS, 2010. 2

[28] J. C. Platt. Sequential minimal optimization: A fast algo-
rithm for training support vector machines. Technical re-
port, Advances in Kernel Methods - Support Vector Learn-
ing, 1998. 1

[29] V. Sharmanska, N. Quadrianto, and C. H. Lampert. Learning
to rank using privileged information. In ICCV, 2013. 1, 2

[30] N. Srivastava and R. Salakhutdinov. Multimodal learning
with deep boltzmann machines. In NIPS, 2012. 2

[31] V. Vapnik and R. Izmailov. Learning using privileged infor-
mation: Similarity control and knowledge transfer. JMLR,
16:20232049, 2015. 2

[32] V. Vapnik and A. Vashist. A new learning paradigm:
Learning using privileged information. Neural Networks,
22(56):544–557, 2009. 1, 2, 6, 7

[33] Z. Wang and Q. Ji. Classifier learning with hidden informa-
tion. In CVPR, 2015. 1, 2

[34] X. Xu, W. Li, and D. Xu. Distance metric learning using
privileged information for face verification and person re-
identification. T-NNLS, 26:3150–3162, Dec 2015. 2

[35] Q. Zhang, G. Hua, W. Liu, Z. Liu, and Z. Zhang. Can visual
recognition benefi from auxiliary information in training? In
ACCV, 2014. 1, 2


